
DM534 — Øvelser Uge 45

Introduktion til Datalogi, Efter̊ar 2021

Jonas Vistrup

1 I

1.1

Prove that no matter which other algorithm than the one from the lecture notes we define for
ski rental, the algorithm will perform worse, i.e., the competitive ratio will be strictly higher
than 19

10 .

SVAR: Start by analyzing the algorithms “Buy on day 5” and “Buy on day 15” to see what
happens. The skis still cost 10 units to buy and 1 unit per day to rent.

Worst case (leave after 5 days) for ”Buy on day 5” gives 14
5 = 2.8.

Worst case (leave after 15 days) for ”Buy on day 15” gives 24
10 = 2.4

Both sides approach 19
10 . As the day they buy approach day 10, the ratio approaches 19

10

1.2

For m = 3, which schedule does the List Scheduling algorithm, Ls, produce on the following
input sequence:

SVAR:

1

1.3

In the lecture, we proved that the machine scheduling algorithm, Ls, could not perform better
than 2− 1

m . We now consider only two machines. Thus, m = 2, and the ratio is then 3
2 . Just

because Ls cannot perform better, it could be that some other algorithm could. Prove (for
m = 2) that this is not the case. You must design an input, where no algorithm, no matter
what decisions it makes, can do better than 3

2 times Opt. You only need sequences with two
and three jobs and a case analysis with only two cases, depending on what an algorithm does
with the second job that is given.

SVAR: Consider three jobs where the first two have size 3 and 3. The algorithm could either
put both on one machine or one on each. If both are put on one machine, the next job should
have size 1. In that case the best the algorithm can achive is 6

4 = 3
2 .

If the algorithm put one on each. The next job should be size 6. Then the algorithms ratio
is 9

6 = 3
2 .

1.4

Consider the first bin packing example given in the lecture (slide 19), where the First-Fit
algorithm, Ff, uses four bins. Show that Opt only needs three.

SVAR:

Page 2 of 5

1.5

How does the First-Fit algorithm, Ff, behave on the input sequence below? Item sizes are
given in multiples of 1

6 .

SVAR:

1.6

Why can the following configuration have not been produced by the bin packing algorithm
Ff? Item size are given in multiples of 1

9 .

SVAR: 2 would have been put in the second bin.

Page 3 of 5

2 II

2.1

For bin packing, one can prove the upper bound that Ff is 1.7-competitive. However, this is
a quite hard proof. In this exercise, we will try to improve (raise) the lower bound.

In the lecture, we saw an example demonstrating that Ff can be as bad as 3
2 = 1.5 times

Opt.

Let that example inspire you, and try to use items of the following three sizes:

1

7
+

1

1000
,

1

3
+

1

1000
,

1

2
+

1

1000

Find a sequence where Ff performs 5
3 times worse than Opt.

SVAR: First 5 of 1
7 + 1

1000 , then 2 of 1
3 + 1

1000 , followed by 3 of 1
2 + 1

1000 . FF would place
all the 1/7 in the first bin. Then there is not room for the 1/3, so all the 1/3 are placed in a
second bin. Finally the three 1/2 can’t be placed together because of the + 1

1000 , so the each
get their own bin. This makes 5 bins total.

The OPT would be placing a 1/2, 1/3 and a 1/7 in the two of the bins, and fill a third bin
with the remaining 1/2 and 3 1/7. This makes the ratio 5/3.

Now try using
1

43
+

1

10000
,

1

7
+

1

10000
,

1

3
+

1

10000
,

1

2
+

1

10000

to get a lower bound close to the 1.7 upper bound.

Input:

37 · (
1

43
+

1

10000
), 11 · (

1

7
+

1

10000
), 12 · (

1

3
+

1

10000
), 13 · (

1

2
+

1

10000
)

Page 4 of 5

This result in a 22
13 ≈ 1.6923 ratio.

2.2

It is very easy to implement Ff in Java, if there are no efficiency requirements: just use an
array to hold the current level in the bins, and for each item, search for the first bin with
enough space. If you make sure there are enough bins from the beginning, then there are
no special cases. And you simple count the number of non-empty bins at the end to get the
result.

Implement Ff.

Try to define your own algorithm, from scratch or as a variant of Ff.

Test your own algorithm up against Ff and try to determine which one is best; for instance
on uniformly distributed sequences.

In Java, one way to create pseudorandom floating point numbers uniformly distributed in
the interval [0, 1[is via the class java.util.Random and its NextFloat method. You may
want to look at the tutorial here: http://www.functionx.com/java/Lesson18.htm. If
you want to generate the same sequence of pseudorandom numbers in different invocations
of your program (for instance to compare two algorithms on the same input sequences), you
must set the seed in the random number generator at the start of the program (otherwise
it is automatically set to a different seed at each invocation). This is also described in the
tutorial.

Page 5 of 5

	I
	
	
	
	
	
	

	II
	
	

