
Cryptography, Number Theory, and RSA

Introduction to Computer Science

Ruben Niederhagen

November 2021

Department of Mathematics and Computer Science (IMADA)

Outline

• Symmetric key cryptography

• Public key cryptography

• Introduction to number theory

• RSA

• Correctness of RSA

• Modular exponentiation

• Greatest common divisor

• Primality testing

• Digital signatures with RSA

• Combining symmetric and public key systems

Department of Mathematics

and Computer Science (IMADA)

1/61

Cryptography vs. Cryptanalysis

Cryptology

Cryptanalysis

Social Engineering

Implementation

Attacks

Classical

Cryptanalysis
Brute Force

Attacks

Mathematical

Analysis

Cryptography

Protocols

Asymmetric Schemes

Symmetric Schemes

Department of Mathematics

and Computer Science (IMADA)

2/61

Why is Cryptography helpful?

• A system has formal or informal security requirements.

• The requirements include security goals for protecting assets.

• “The data must not be accessible by a third party.”

• “It must be ensured, that the data comes from device X.”

• …

• These security goals can be reached by the use of

cryptographic primitives and protocols (security mechanisms).

• Cryptography is necessary for security, but not sufficient.

Department of Mathematics

and Computer Science (IMADA)

3/61

Confidentiality

• Information must not be accessible by

third parties.

⇒ Encryption

Department of Mathematics

and Computer Science (IMADA)

4/61

Integrity

• The correctness of information

(data is not modified).

→ Detection of manipulation.

⇒ Cryptographic Hash Function

6b 94 1a 73 8d a5 c6 6a d7 91 93 24 83 62 30 83

05 ac 60 83 18 50 21 01 12 21 09 5c 2c 59 4e c f

ce 1c 91 f9 60 66 55 e6 b2 cc 35 99 91 cc 8e cc

78 a4 97 b9 d1 8d 1e dd 3e 9e e8 4d c0 e0 f f fe

4d 20 9b 0e a0 fa 75 2b 18 07 c f 4c dc 39 6d e5

ca e9 eb 47 1c 79 e5 ea 87 d3 de 7d ac ec 68 69

f5 aa 19 bb 42 bb 9e f f dd 2 f cb f6 b0 11 bb 33

32 0a 0b 43 e3 7c b6 be 9b 56 6e de eb f7 1 f cc

cb 2b ba 67 42 41 20 26 75 43 75 43 93 9b 90 1b

2b 0b 44 f f 6a b2 10 26 4d c4 dc 4d 54 94 d8 48

15 e9 a1 93 69 29 7d 82 fe 88 3e 27 1d 95 3e f6

a6 79 73 bc 43 bd 4d be 94 9e 1e fd 7b 86 44 e8

24 5a 82 ed 4b 7b db 63 b1 3d f f bb f6 7 f 1e 28

ce f1 31 7d 81 6e a6 0d 18 23 bd f1 28 c6 e3 f4

f8 b f e8 27 f5 e6 3c aa b3 e1 5 f ce 41 90 c f fe

3e 98 fe 9b 3e 37 03 c3 73 f7 fb 41 8e 3e ad 24

06 b1 b1 f4 ca 34 4c b6 68 49 f9 1 f 8e fa f f 2c

d0 3c d2 42 4e 62 3c 4c 1a c9 66 ba 03 6b 65 28

9e 8b 92 88 f4 16 59 41 e6 a3 e4 5d 7a 12 3 f a9

b2 50 b6 83 74 90 33 f8 66 2d 39 09 8d 8c d0 f1

24 17 a5 84 9c e7 12 e9 a4 85 64 0 f 8e 91 8 f 27

42 3e de 5a 08 9b c8 f6 b0 49 ac 85 5d 62 a7 c9

60 56 c1 4e b3 12 56 41 73 e1 65 3e 85 ef c0 94

0 f e f 49 76 bc 43 7a 48 0b bd 40 2a c8 3e f8 1c

Department of Mathematics

and Computer Science (IMADA)

5/61

Authenticity

• Provable validity and credibility

of data and subjects.

⇒ Data:

• Message Authentication Code

• Digital Signature

→ Often depends on integrity.

⇒ Subjects:

• Authentication

• Authorization

→ Verifier authenticates proofer.

Department of Mathematics

and Computer Science (IMADA)

6/61

Non-Repudiation

• Guarantee of reliability of actions.

• A subject cannot deny an applied action

afterwards.

⇒ Digital Signature

Department of Mathematics

and Computer Science (IMADA)

7/61

Summary

Security Goals Security Mechanisms

Confidentiality → Encryption

Integrity → Cryptographic Hash Function

Authenticity → Message Authentication Code, Digital Signature

Non-Repudiation → Digital Signature

. . . → . . .

Department of Mathematics

and Computer Science (IMADA)

8/61

What is encryption?

• Every key k ∈ K of a key space K uniquely defines an encryption function

Ek :M→ C is a bijection from a message spaceM to a ciphertext space C, called
the encryption function.

• For each key d ∈ K, Dk : C →M denotes a bijection from C toM, called the

decryption function.

• Decryption is the inverse of encryption, i.e. Dk(Ek(m)) = m.

Department of Mathematics

and Computer Science (IMADA)

9/61

Caesar Cipher (with key = 3)

A B C D E F G H I J K L M N O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D E F G H I J K L M N O P Q R

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P Q R S T U V W X Y Z Æ Ø Å

15 16 17 18 19 20 21 22 23 24 25 26 27 28

S T U V W X Y Z Æ Ø Å A B C

18 19 20 21 22 23 24 25 26 27 28 0 1 2

ci = mi + 3 (mod 29)

Department of Mathematics

and Computer Science (IMADA)

10/61

Symmetric Key Systems

Suppose the following was encrypted using a Caesar cipher and the Danish alphabet.

The key is unknown.

ZQOØQOØ, RI.

What does it say?

What does this say about how many keys should be possible?

Department of Mathematics

and Computer Science (IMADA)

11/61

Kerckhoffs’s Principle

• Requirement for modern crypto systems.

• The security of a scheme must not depend on the

secrecy of the scheme but on the secret key.

⇒ Large key space.

⇒ Effort to break a scheme must be higher than the

resources of an adversary.

⇒ The scheme and implementation should be

publicly available and auditable.

Department of Mathematics

and Computer Science (IMADA)

12/61

Vigenère Cipher

• Vigenère cipher shifts the input by a rotating key of some length m:

ci = mi + ki mod m (mod n)

• Example for key {3,1,4}:

Input H e l l o …

Key 3 1 4 3 1 …

Output K f p o p …

Department of Mathematics

and Computer Science (IMADA)

13/61

One-Time-Pad

• The One-Time-Pad (OTP) uses an infinitely long key:

ci = mi + k++ (mod n)

• The same key index must never be used again.

• All ciphertexts are independent from all plain texts and from each other.

• If the key of the OTP is uniform and perfectly random, the cipher is unbreakable.

→ Note: If a Vigenère key has the same length as the message and each key is used

only once, it is the same as the OTP.

Department of Mathematics

and Computer Science (IMADA)

14/61

A more Visual Approach

Original Caesar

Department of Mathematics

and Computer Science (IMADA)

15/61

A more Visual Approach

Original Vigenère

Department of Mathematics

and Computer Science (IMADA)

15/61

A more Visual Approach

Original Vigenère (longer key)

Department of Mathematics

and Computer Science (IMADA)

15/61

A more Visual Approach

Original One-Time-Pad

Department of Mathematics

and Computer Science (IMADA)

15/61

A more Visual Approach

Original One-Time-Pad (imperfect key)

Department of Mathematics

and Computer Science (IMADA)

15/61

Symmetric Key Systems

• Caesar Cipher

• Vigenère Cipher

• One-Time Pad

• Enigma

• DES

• Triple DES

• (IDEA)

• Blowfish

• AES

Department of Mathematics

and Computer Science (IMADA)

16/61

Symmetric Key Systems

• Caesar Cipher

• Vigenère Cipher

• One-Time Pad

• Enigma

• DES

• Triple DES

• (IDEA)

• Blowfish

• AES

Problem:

Both sides need to know a shared secret key.

How do we securely communicate the key?

Solution:

Use public key cryptography:

• Use a public key for encryption.

• Use a private (secret) key for decryption.

Department of Mathematics

and Computer Science (IMADA)

16/61

Public Key Cryptography

Bob — 2 keys -PKB,SKB

PKB — Bob’s public key

SKB — Bob’s private (secret) key

For Alice to send m to Bob,

to encrypt m, Alice computes:

c = E(m,PKB).

To decrypt c, Bob computes:

r = D(c,SKB).

r = m

It must be “hard” to compute m from (c,PKB).

It must be “hard” to compute SKB from PKB.

Department of Mathematics

and Computer Science (IMADA)

17/61

Introduction to Number Theory

Definition

Suppose a,b ∈ ZZ, a > 0.

Suppose ∃c ∈ ZZ s.t. b = ac.

Then a divides b: a | b.

a is a factor of b.

b is a multiple of a.

e - f means e does not divide f .

Theorem

a,b, c ∈ ZZ. Then

1. if a|b and a|c, then a|(b+ c),

2. if a|b, then a|bc ∀c ∈ ZZ, and
3. if a|b and b|c, then a|c.

Department of Mathematics

and Computer Science (IMADA)

18/61

Introduction to Number Theory

p ∈ ZZ, p > 1

Definition (prime)

p is prime if 1 and p are the only positive

integers which divide p.

Definition (composite)

p is composite if it is not prime.

Example (primes)

2,3,5,7,11,13,17, ...

Example (composites)

4,6,8,9,10,12,14,15,16, ...

Department of Mathematics

and Computer Science (IMADA)

19/61

Introduction to Number Theory

Theorem

a ∈ ZZ, d ∈ IN
∃ unique q, r , 0 ≤ r < d s.t.

a = dq+ r

d – divisor

a – dividend

q – quotient

r – remainder = a mod d

Definition (relatively prime)

gcd(a,b) = greatest common

divisor of a and b

= largest d ∈ ZZ s.t. d|a and d|b

If gcd(a,b) = 1, then a and b are

relatively prime or coprime.

Department of Mathematics

and Computer Science (IMADA)

20/61

Introduction to Number Theory

Definition (congruence)

a ≡ b (mod m) — a is congruent to b modulo m if m | (a− b).

m | (a− b) ⇒ ∃k ∈ ZZ s.t. a = b+ km.

Theorem

a ≡ b (mod m) c ≡ d (mod m)

Then a+ c ≡ b+ d (mod m) and

ac ≡ bd (mod m).

Proof.

∃k1, k2 s.t.
a = b+ k1m c = d + k2m

a+ c = b+ k1m+ d + k2m

= b+ d + (k1 + k2)m

Department of Mathematics

and Computer Science (IMADA)

21/61

Introduction to Number Theory

Definition (congruence)

a ≡ b (mod m) — a is congruent to b modulo m if m | (a− b).

m | (a− b) ⇒ ∃k ∈ ZZ s.t. a = b+ km.

Example

1. 15 ≡ 22 (mod 7)?

2. 15 ≡ 1 (mod 7)?

3. 15 ≡ 37 (mod 7)?

4. 58 ≡ 22 (mod 9)?

Proof.

∃k1, k2 s.t.
a = b+ k1m c = d + k2m

a+ c = b+ k1m+ d + k2m

= b+ d + (k1 + k2)m

Department of Mathematics

and Computer Science (IMADA)

21/61

RSA — A Public Key System

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

Example

p = 5, q = 11, e = 3, d = 27, m = 8.

Then N = p · q = 5 · 11 = 55,

(p− 1)(q− 1) = 4 · 10 = 40,

gcd(e, (p− 1)(q− 1)) = gcd(3,40) = 1,

e · d = 81. So e · d ≡ 1 (mod 40).

To encrypt m: c = 83 (mod 55)

= 512 (mod 55) = 17.

To decrypt c: r = 1727 (mod 55)

= 1667711322168688287513535727415473

(mod 55) = 8.

Department of Mathematics

and Computer Science (IMADA)

22/61

RSA — A Public Key System

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

Why does RSA work?

Chinese Remainder Theorem and

Fermat’s Little Theorem.

Department of Mathematics

and Computer Science (IMADA)

23/61

Why does RSA work?

Theorem (Fermat’s Little Theorem)

p is a prime, p - a.

Then ap−1 ≡ 1 (mod p)

and ap ≡ a (mod p).

Example

37 ≡ 3 (mod 7)

36 ≡ 1 (mod 7)

2340 ≡ 1 (mod 41)

Department of Mathematics

and Computer Science (IMADA)

24/61

Why does RSA work?

Theorem (The Chinese Remainder Theorem)

Let n1,n2, ..., nk be pairwise relatively prime. For any integers x1, x2, ..., xk , there exists

x ∈ ZZ s.t. x ≡ xi (mod ni) for 1 ≤ i ≤ k, and this integer is uniquely determined modulo the

product N = n1n2...nk .

x ≡ x1 (mod n1)

x ≡ x2 (mod n2)

. . .

x ≡ xk (mod nk)

→ x ≡ x1 ≡ x2 ≡ · · · ≡ xk (mod N = n1n2...nk)

Department of Mathematics

and Computer Science (IMADA)

25/61

Why does RSA work?

Correctness of RSA

Consider r = D(E(m,PKA),SKA).

Note ∃k s.t. eAdA = 1+ k(pA − 1)(qA − 1).

r ≡ (meA (mod NA))
dA (mod NA) ≡ meAdA ≡ meAdA ≡ m1+k(pA−1)(qA−1) (mod NA).

Consider r (mod pA). Use Fermat’s little theorem.

r ≡ m1+k(pA−1)(qA−1) ≡ m · (m(pA−1))k(qA−1) ≡ m · 1k(qA−1) ≡ m (mod pA).

Consider r (mod qA). Use Fermat’s little theorem.

r ≡ m1+k(pA−1)(qA−1) ≡ m · (m(qA−1))k(pA−1) ≡ m · 1k(pA−1) ≡ m (mod qA).

Apply the Chinese Remainder Theorem:

gcd(pA,qA) = 1,⇒ r ≡ m (mod NA).

⇒ So D(E(m,PKA),SKA) = m.

Department of Mathematics

and Computer Science (IMADA)

27/61

Why does RSA work?

x ≡ x1 (mod n1)

x ≡ x2 (mod n2)

→ x ≡ x1 ≡ x2 (mod N = n1n2)

→

r ≡ m (mod p)

r ≡ m (mod q)

→ r ≡ m ≡ m (mod N = pq)

We consider the special case where n1 = p and n2 = q are two primes (hence N = pq),

and where x1 = x2 = m.

Clearly, m ≡ m (mod p) and m ≡ m (mod q) for any m.

So since r fulfills r ≡ m (mod p) and r ≡ m (mod q), then r ≡ m (mod N).

In particular, 0 ≤ r ,m ≤ N − 1, so we must have r = m.

Department of Mathematics

and Computer Science (IMADA)

28/61

Why does RSA work?

Correctness of RSA

Consider r = D(E(m,PKA),SKA).

Note ∃k s.t. eAdA = 1+ k(pA − 1)(qA − 1).

r ≡ (meA (mod NA))
dA (mod NA) ≡ meAdA ≡ meAdA ≡ m1+k(pA−1)(qA−1) (mod NA).

Consider r (mod pA). Use Fermat’s little theorem.

r ≡ m1+k(pA−1)(qA−1) ≡ m · (m(pA−1))k(qA−1) ≡ m · 1k(qA−1) ≡ m (mod pA).

Consider r (mod qA). Use Fermat’s little theorem.

r ≡ m1+k(pA−1)(qA−1) ≡ m · (m(qA−1))k(pA−1) ≡ m · 1k(pA−1) ≡ m (mod qA).

Apply the Chinese Remainder Theorem:

gcd(pA,qA) = 1,⇒ r ≡ m (mod NA).

⇒ So D(E(m,PKA),SKA) = m.

Department of Mathematics

and Computer Science (IMADA)

29/61

Security of RSA

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

RSA problem:

Given c and PKA = (NA,eA), find m

such that:

c = meA (mod NA).

This is believed to be hard to solve for

large values.

Department of Mathematics

and Computer Science (IMADA)

30/61

Security of RSA

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

The primes pA and qA are kept secret

with dA.

What happens if Eve can factor NA?

Then she can find pA and qA.

From them and eA, she finds dA.

Then she can decrypt just like Alice.

Factoring must be hard!

Department of Mathematics

and Computer Science (IMADA)

30/61

Factoring

Theorem

N composite⇒ N has a prime divisor ≤
√
N.

procedure FACTOR(N)

for i = 2 to
√
N do

if i divides N then

return (i,N/i) . divisor found

end if

end for

return -1 . divisor not found

end procedure

Corollary

There is an algorithm for factoring N that does O(
√
N) tests of divisibility.

Department of Mathematics

and Computer Science (IMADA)

31/61

Factoring

Check all possible divisors between 2 and
√
N.

Not finished in your grandchildren’s life time for N with 3072 bits.

Problem:

The length of the input is n = dlog2(N + 1)e.

So the running time is O(2n/2) — exponential.

Open Problem:

Does there exist a polynomial time factoring algorithm?

Use primes which are at least 2048 (or 3072) bits long.

So 22047 ≤ pA,qA < 22048 — so pA ≈ 10616.

Department of Mathematics

and Computer Science (IMADA)

32/61

RSA — A Public Key System

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

How do we implement RSA?

We need to encrypt and decrypt:

compute ak (mod n).

Example

p = 5, q = 11, e = 3, d = 27, m = 8.

Then N = 55.

e · d = 81.

So e · d ≡ 1 (mod 4 · 10).

To encrypt m: c = 83 (mod 55) = 17.

To decrypt c: r = 1727 (mod 55) = 8.

Department of Mathematics

and Computer Science (IMADA)

33/61

RSA — A Public Key System

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

Example

p = 5, q = 11, e = 3, d = 27, m = 8.

Then N = p · q = 5 · 11 = 55,

(p− 1)(q− 1) = 4 · 10 = 40,

gcd(e, (p− 1)(q− 1)) = gcd(3,40) = 1,

e · d = 81. So e · d ≡ 1 (mod 40).

To encrypt m: c = 83 (mod 55)

= 512 (mod 55) = 17.

To decrypt c: r = 1727 (mod 55)

= 1667711322168688287513535727415473

(mod 55) = 8.

Department of Mathematics

and Computer Science (IMADA)

34/61

Modular Exponentiation

Theorem

For all nonnegative integers, b, c,m, b · c (mod m) = (b (mod m)) · (c (mod m)) (mod m).

Example

a3 (mod n) = a · a2 (mod n) = (a (mod n))(a2 (mod n)) (mod n).

83 (mod 55) = 8 · 82 (mod 55)

= 8 · 64 (mod 55)

= 8 · 9 (mod 55)

= 72 (mod 55)

= 17

⇒ Computing modulo often keeps the numbers (relatively) small!

Department of Mathematics

and Computer Science (IMADA)

35/61

RSA — Encryption/Decryption

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) ≡ a · a (mod n) — 1 modular multiplication

a3 (mod n) ≡ a · (a · a (mod n)) (mod n) — 2 mod mults

Guess: k − 1 modular multiplications.

This is too many!

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

pA and qA have ≥ 2048 bits each.

So at least one of eA and dA has ≥ 2048 bits.

To either encrypt or decrypt would need ≥ 22047 ≈ 10616 operations

(age of the universe: 4.3 · 1017 seconds).

Department of Mathematics

and Computer Science (IMADA)

36/61

RSA — Encryption/Decryption

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) ≡ a · a (mod n) — 1 modular multiplication

a3 (mod n) ≡ a · (a · a (mod n)) (mod n) — 2 mod mults

How do you calculate a4 (mod n) with less than 3 mod mults?

a4 (mod n) ≡ (a2 (mod n))2 (mod n) — 2 mod mults

In general: a2s (mod n)?

a2s (mod n) ≡ (as (mod n))2 (mod n)

In general: a2s+1 (mod n)?

a2s+1 (mod n) ≡ a · ((as (mod n))2 (mod n)) (mod n)

Department of Mathematics

and Computer Science (IMADA)

37/61

Modular Exponentiation

procedure EXP(a,k,n) . Compute ak (mod n)

if k < 0 then return -1 . Error

if k = 0 then return 1

if k = 1 then return a (mod n)

if k is odd then

c1 ← EXP(a, k − 1,n)

return a · c1 (mod n)

end if

if k is even then

c2 ← EXP(a, k/2,n)

return c2 · c2 (mod n)

end if

end procedure

To compute 36 (mod 7): Exp(3,6,7)

c2 ←Exp(3,3,7)

c1 ←Exp(3,2,7)

c2 ←Exp(3,1,7)

3 (mod 7) = 3

c2 · c2 (mod n) = 3 · 3 (mod 7) = 2

a · c1 (mod n) = 3 · 2 (mod 7) = 6

c2 · c2 (mod n) = (6 · 6) (mod 7) = 1

Department of Mathematics

and Computer Science (IMADA)

38/61

Modular Exponentiation

procedure EXP(a,k,n) . Compute ak (mod n)

if k < 0 then return -1 . Error

if k = 0 then return 1

if k = 1 then return a (mod n)

if k is odd then

c1 ← EXP(a, k − 1,n)

return a · c1 (mod n)

end if

if k is even then

c2 ← EXP(a, k/2,n)

return c2 · c2 (mod n)

end if

end procedure

How many modular multiplications?

Divide exponent by 2 every other time.

How many times can we do that?

blog2(k)c— So at most 2blog2(k)c modular
multiplications.

This is quite cheap!

⇒We can compute modular exponentiation

efficiently using square-and-multiply and

frequent modulo operations.

Department of Mathematics

and Computer Science (IMADA)

38/61

RSA — A Public Key System

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

Use NA = 35 eA = 11 to create keys.

What are pA and qA?

What is dA? Try dA = 11 and check it.

Encrypt 4. Decrypt the result.

Department of Mathematics

and Computer Science (IMADA)

39/61

Greatest Common Divisor

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

How do we implement RSA?

We need to find: eA,dA.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

Choose random eA.

Check that:

gcd(eA, (pA − 1)(qA − 1)) = 1.

Find dA such that:

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

Department of Mathematics

and Computer Science (IMADA)

40/61

The Extended Euclidean Algorithm

Theorem

a,b ∈ IN. ∃ s, t ∈ ZZ s.t. sa+ tb = gcd(a,b).

Proof.

Let d be the smallest positive integer in D = {xa+ yb | x, y ∈ ZZ}.
d ∈ D ⇒ d = x′a+ y ′b for some x′, y ′ ∈ ZZ.
gcd(a,b)|a and gcd(a,b)|b, so gcd(a,b)|x′a, gcd(a,b)|y ′b, and gcd(a,b)| (x′a+ y ′b = d).

We will show that d|gcd(a,b), so d = gcd(a,b).

Suppose a = dq+ r with 0 ≤ r < d and some q.

r = a− dq

= a− q(x′a+ y ′b)

= (1− qx′)a− (qy ′)b

⇒ r ∈ D
r < d, d is smallest positive integer in D⇒ r = 0 ⇒ d|a. Similarly, one can show that d|b.
Therefore, d|gcd(a,b).

Department of Mathematics

and Computer Science (IMADA)

41/61

The Extended Euclidean Algorithm

How do you find d, s and t?

Let d = gcd(a,b). Write b as b = aq+ r with 0 ≤ r < a.

Then, d|b ⇒ d|(aq+ r).

Also, d|a ⇒ d|(aq) ⇒ d|((aq+ r)− aq) ⇒ d|r ⇒ d|a, d|b, d|(a mod b).

Let d′ = gcd(a, r) = gcd(a,b− aq).

Then, d′|a ⇒ d′|(aq)
Also, d′|(b− aq) ⇒ d′|((b− aq) + aq) ⇒ d′|b⇒ d′|a, d′|(a mod b), d′|b.

Thus, gcd(a,b) = gcd(a,b (mod a)) = gcd(b (mod a),a).

We can reduce to a “smaller” problem⇒. Extended Euclidean Algorithm

Department of Mathematics

and Computer Science (IMADA)

42/61

The Extended Euclidean Algorithm

Example

Compute s and t such that s · 6+ t · 9 = gcd(6,9):

9 = 0 · 6+ 1 · 9
6 = 1 · 6+ 0 · 9

gcd(6,9) = gcd(9 mod 6,6)

9− 1 · 6 = (0 · 6+ 1 · 9)− 1(1 · 6+ 0 · 9)
3 = −1 · 6+ 1 · 9 = gcd(6,9)

Department of Mathematics

and Computer Science (IMADA)

43/61

The Extended Euclidean Algorithm

d0 ← b s0 ← 0 t0 ← 1

d1 ← a s1 ← 1 t1 ← 0

n← 1

while dn > 0 do

begin

n← n+ 1

qn ← bdn−2/dn−1c
dn ← dn−2 − qndn−1

sn ← sn−2 − qnsn−1

tn ← tn−2 − qntn−1

end

return s← sn−1, t ← tn−1, gcd(a,b)← dn−1

Department of Mathematics

and Computer Science (IMADA)

44/61

The Extended Euclidean Algorithm

Finding multiplicative inverses modulo m:

Given a and m, find x s.t. a · x ≡ 1 (mod m).

Should also find a k, s.t. ax = 1+ km.

So solve for an s in an equation sa+ tm = 1.

This can be done if gcd(a,m) = 1.

Just use the Extended Euclidean Algorithm.

If the result, s, is negative, add m to s.

Now, for s′ = s +m, we have

(s′ −m)a+ tm ≡ 1 (mod m).

Examples:

Calculate the following:

1. gcd(6,9)

2. s and t such that

s · 6+ t · 9 = gcd(6,9)

3. gcd(15,23)

4. s and t such that

s · 15+ t · 23 = gcd(15,23)

Department of Mathematics

and Computer Science (IMADA)

45/61

Primality Testing

NA = pA · qA, where pA,qA prime.

gcd(eA, (pA − 1)(qA − 1)) = 1.

eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

• PKA = (NA,eA)

• SKA = (NA,dA)

To encrypt:

c = E(m,PKA) = meA (mod NA).

To decrypt:

r = D(c,SKA) = cdA (mod NA).

⇒ r = m.

How do we implement RSA?

We need to find: pA,qA — large primes.

Choose numbers at random and check if

they are prime?

Department of Mathematics

and Computer Science (IMADA)

46/61

Questions

1. How many random integers of length 1024 are prime?

Theorem (Prime Number Theorem)

About x
ln x numbers < x are prime.

So, about 21024

709
integers of length 1024 are prime.

⇒We expect to test about 709 numbers before finding a prime with 1024 bits.

(This holds because the expected number of tries until a “success”, when the probability of

“success” is p, is 1/p.)

2. How fast can we test if a number is prime?

Department of Mathematics

and Computer Science (IMADA)

47/61

Primality Test — Method 1

Sieve of Eratosthenes:

Use lists to track multiples of primes:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 . . .

3 5 7 9 11 13 15 17 19 21 . . .

5 7 11 13 17 19 . . .

7 11 13 17 19 . . .

21024 ≈ 10308 — more than the number of atoms in universe (1078 to 1082).

So we cannot even write out this list!

Department of Mathematics

and Computer Science (IMADA)

48/61

Primality Test — Method 2

procedure CHECKPRIME(n)

for i = 2 to
√
n do

if i divides n then

return 1 . divisor found

end if

end for

return -1 . divisor not found

end procedure

The same as factoring.

Check all possible divisors between 2 and
√
n.

Our sun will die before we’re done!

Department of Mathematics

and Computer Science (IMADA)

49/61

Miller–Rabin Primality Test

Recall:

Theorem (Fermat’s Little Theorem)

Suppose p is a prime.

Then for all 1 ≤ a ≤ p− 1,

ap−1 (mod p) ≡ 1.

Use a randomized primality test:

Miller–Rabin primality test:

Starts with Fermat test:

214 (mod 15) ≡ 4 6= 1.

So 2 is a witness that 15 is not prime.

Fermat test:
procedure PRIME(n)

for i = 1 to r do

Choose random a ∈ {1,2, . . . , n−1}
if an−1 (mod n) 6≡ 1 then

return composite

end if

end for

return probably prime

end procedure

Problem:

Does not work well for some numbers!

Department of Mathematics

and Computer Science (IMADA)

50/61

Miller–Rabin Primality Test

Definition (Carmichael Numbers)

A composite n such that

for all a ∈ {1,2, . . . , n− 1} s.t. gcd(a,n) = 1, an−1 (mod n) ≡ 1

is called a Carmichael number.

Example

561 = 3 · 11 · 17

Only 241 out of 560 numbers are prime-witnesses for 561.

It is likely that Fermat’s test does not reveil 561 as prime for several attempts.

For Carmichael numbers with large prime factors, this becomes even more significant.

Department of Mathematics

and Computer Science (IMADA)

51/61

Miller–Rabin Primality Test

Theorem

If p is prime,√
1 (mod p) = {x | x2 (mod p) = 1} = {1,p− 1}.

If p has > 1 distinct factors, 1 has at least 4

square roots.

Example
√
1 (mod 15) = {1,4,11,14}

Example

Taking square roots of 1 (mod 561):

50560 (mod 561) ≡ 1

50280 (mod 561) ≡ 1

50140 (mod 561) ≡ 1

5070 (mod 561) ≡ 1

5035 (mod 561) ≡ 560

2560 (mod 561) ≡ 1

2280 (mod 561) ≡ 1

2140 (mod 561) ≡ 67

2 is a witness that 561 is composite.

Department of Mathematics

and Computer Science (IMADA)

52/61

Miller–Rabin Primality Test

procedure MILLERRABIN(n, r)

Calculate odd m such that n− 1 = 2s ·m
for i = 1 to r do

Choose random a ∈ {1,2, . . . , n− 1}
if an−1 (mod n) 6≡ 1 then return composite

if a(n−1)/2 (mod n) ≡ n− 1 then continue

if a(n−1)/2 (mod n) 6≡ 1 then return composite

if a(n−1)/4 (mod n) ≡ n− 1 then continue

if a(n−1)/4 (mod n) 6≡ 1 then return composite

. . .

if am (mod n) ≡ n− 1 then continue

if am (mod n) 6≡ 1 then return composite

end for

return probably prime

end procedure

Department of Mathematics

and Computer Science (IMADA)

53/61

Miller–Rabin Primality Test

Theorem

If n is composite, at most 1/4 of the a’s with 1 ≤ a ≤ n− 1 will not end in

“return composite” during an iteration of the for-loop.

This means that with r iterations, a composite n will survive to “return probably prime” with

probability at most (1/4)r . For e.g. r = 100, this is less than (1/4)100 = 1/2200 < 1/1060.

A prime n will always survive to “return probably prime”.

⇒We can test for primality quite fast!

Department of Mathematics

and Computer Science (IMADA)

54/61

Conclusions about Primality Testing

1. Miller–Rabin is a practical primality test.

2. There is a less practical deterministic primality test.

3. Randomized algorithms are useful in practice.

4. Algebra is used in primality testing.

5. Number theory is not useless.

Department of Mathematics

and Computer Science (IMADA)

55/61

Combining Symmetric and Public Key Systems

Problem:

Public key systems are slow!

Solution:

Use symmetric key system for large message.

Encrypt only session key with public key system.

To encrypt a message m to send to Bob:

• Choose a random session key k for a symmetric key system (e.g., AES).

• Encrypt k with Bob’s public key — result ke.

• Encrypt m with k — result me.

• Send ke and me to Bob.

How does Bob decrypt? Why is this efficient?

Department of Mathematics

and Computer Science (IMADA)

56/61

Digital Signatures with RSA

Suppose Alice wants to sign a document m such that:

• no one else could forge her signature and

• it is easy for others to verify her signature.

Note m has arbitrary length.

RSA is used on fixed length messages.

Alice uses a cryptographically secure hash function h, such that:

• for any message m′, h(m′) has a fixed length (e.g., 512 bits) and

• it is “hard” for anyone to find two messages (m1,m2) such that h(m1) = h(m2).

Department of Mathematics

and Computer Science (IMADA)

57/61

Digital Signatures with RSA

Then Alice “decrypts” h(m) with her secret RSA key (NA,dA):

s = (h(m))dA (mod NA).

Bob verifies her signature using her public RSA key (NA,eA) and h:

c = seA (mod NA).

He accepts if and only if

h(m) = c.

This works because seA (mod NA) =

((h(m))dA)eA (mod NA) = ((h(m))eA)dA (mod NA) = h(m).

Department of Mathematics

and Computer Science (IMADA)

58/61

Use of Cryptography

Data in transit:

• websites,

• emails,

• chat,

• . . .

Data at rest:

• disc encryption,

• program or data

obfuscation,

• . . .

Authentication:

• passports,

• NemID,

• biometry,

• . . .

Rights management:

• media access,

• feature activation,

• . . .

Privacy:

• data mining on

anonymized data,

• age verification,

• . . .

Anonymity:

• voting systems,

• bidding systems,

• . . .

Department of Mathematics

and Computer Science (IMADA)

59/61

Further Reading (if interested)

“The Code Book”

Simon Singh

“Understanding Cryptography”

Christof Paar, Jan Pelzl

Department of Mathematics

and Computer Science (IMADA)

60/61

XKCD — Security
Department of Mathematics

and Computer Science (IMADA)

61/61

	Security Goals

