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» Symmetric key cryptography
» Public key cryptography
* Introduction to number theory

* RSA

» Correctness of RSA

* Modular exponentiation
* Greatest common divisor
* Primality testing

+ Digital signatures with RSA

« Combining symmetric and public key systems
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Why iS Cryptog I'Clphy helpful.? Department of Mathematics

and Computer Science (IMADA)

« A system has formal or informal security requirements.

» The requirements include security goals for protecting assets.

» “The data must not be accessible by a third party.”
* “It must be ensured, that the data comes from device X.”

» These security goals can be reached by the use of
cryptographic primitives and protocols (security mechanisms).

» Cryptography is necessary for security, but not sufficient.
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Confidentiality

 Information must not be accessible by
third parties.

= Encryption

SDU~
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Integrity

* The correctness of information
(data is not modified).

— Detection of manipulation.

= Cryptographic Hash Function

SDU~
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Authenticity

» Provable validity and credibility
of data and subjects.

= Data:

— Often depends on integrity.

= Subjects:

— Verifier authenticates proofer.

SDU~

Department of Mathematics
and Computer Science (IMADA)

~~~~~ BEGIN PGP SIGNATURE-----

Comment: This signature is for the .tar version of the archive
Comment: git archive --format tar --prefix=linux-4.18.16/ v4.18.16
Comment: git version 2.19.1

1QIZzBAABCAAAFiEEZHB0ZUiU47 1F cZm+ONU9yGCSaT4FALVK3CBACGKQONU9YGCS
aT5iCg/9G1/DFMAYtQUZYttppVxjgBlryIng3+H3avf2EaIMnSOV+SNhQRVbN2VL
aVmjHxyHG0Z5qz23MI3X2) 2UMfMUG5t171cdQ6rYwakCb/Mp76m+fZytteKpDLEN
WGdy0s17bRhhbhAD4UUSMDKqksS93HPUHNTIzbiN57VITKHL c20D/8DAF/ fuyjSu
71iyp8ezo70C HcY912rUzVX00UhjHULCA
XE4gbaRAMKW2aW+1tq/ f5YWFovdUT5ay6mpBhsedpxqYHSFpVMWWCAdIBi PNBINS
9ppsLX0aGSR2+MGQCZTAS1/0SMBXFI3YZFkvjw2mQfOHptCyWCBqyaIzivFjh+ov
VKVISVPTGQOOP7hxcj OkKIAId0gqiwgTVIHUXECATuhxBMesiMgL1ZCKF2T/PSpP
RhyEnR0Jf2] iPkkz/DaPOMtP59wch7PYZwQVzeQP2MXQD8+Ky IWFGEYDhh1DWIVE
BGPOXGYDGYSxgALux/Uf/nhvEri0lpSzQvowdk/RDXFLZYFI2sxWpthnCVNLhwj
vaYydcnugrF3rjL26vav/1i62Q9043nIVj+8uimahN8ZI+w9GCipfVoMuBwal txd
QUBCG0IhIGOXTIC00giS+9BOXZ/n7YM3S1XOPT75tUjSNUXZNgM=
=/5L6
--END PGP SIGNATURE-----
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» Guarantee of reliability of actions.

» A subject cannot deny an applied action
afterwards.

= Digital Signature
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Summary

SDU

Department of Mathematics
and Computer Science (IMADA)

Security Goals

Security Mechanisms

Confidentiality
Integrity
Authenticity
Non-Repudiation

A A

Cryptographic Hash Function
Message Authentication Code, Digital Signature
Digital Signature
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Department of Mathematics

What IS encryptlon? and Computer Science (IMADA)

» Every key k € K of a key space K uniquely defines an encryption function
Ex : M — C is a bijection from a message space M to a ciphertext space C, called
the

» Foreach key d € K, Dy : C —+ M denotes a bijection from C to M, called the

« Decryption is the inverse of encryption, i.e. Dx(Ex(m)) = m.

SDU& 9/61
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Caesar Clpher (Wlth keY - 3) and Computer Science (IMADA)

A/B|C|D|E|F|G|H I J|K|]L M| N|O
0(1(2|3|4|5|6|7 |89 11112 13|14
DIE|F|G|H|I|J]|]K|]L|M|N]O R
3/4(5|6|7(8|9|10|11 12|13 |14 |15 |16 | 17

P/IQ|R|S|T|U|V | W|X|Y|Z| A2 2 A
15 (16 |17 |18 |19 |20 | 21 |22 | 23 |24 | 25 | 26 | 27 | 28
S| T|U|V|W|X|Y|Z|&E£| @ Al A|B|C
18 (19120 |21 |22 |23 |24 25|26 |27 |28 | 0 | 1 2

ci=m; + 3 (mod 29)

SDU+
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Symmetnc Key SYStemS and Computer Science (IMADA)

Suppose the following was encrypted using a Caesar cipher and the Danish alphabet.
The key is unknown.

ZQO@QOY, RI.

What does it say?

What does this say about how many keys should be possible?

SDU/:‘ 11761



Department of Mathematics
and Computer Science (IMADA)

Kerckhoffs’s Principle

JOURNAT,

* Requirement for modern crypto systems.
SCIENCES MILITAIRES.

i

1883,

» The security of a scheme must not depend on the
secrecy of the scheme but on the secret key.
= Large key space.
= Effort to break a scheme must be higher than the
resources of an adversary.
= The scheme and implementation should be
publicly available and auditable.

LA CRYPTOGRAPHIE MILITAIRE'.

SDU ’5" 12/61
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Vigenere Cipher

 Vigenére cipher shifts the input by a rotating key of some length m:

Ci = m;+ k,’ mod m (mod n)

» Example for key {3,1,4}:

Input H e | | o
Key 3 1 4 3 1
Output K f p o p

SDU/:‘ 13/61
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One_Tlme_ Pcd and Computer Science (IMADA)

* The One-Time-Pad (OTP) uses an infinitely long key:
ci=mi+ ki (modn)

* The same key index must never be used again.
« All ciphertexts are independent from all plain texts and from each other.
« If the key of the OTP is uniform and perfectly random, the cipher is unbreakable.

— Note: If a Vigenére key has the same length as the message and each key is used
only once, it is the same as the OTP.
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A more Visual Approach

Caesar

Original

15/61
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A more VlSUQl ApprOGCh and Computer Science (IMADA)

Original Vigenére

SDU’{‘ 15/61



. Department of Mathematics
A more VlSUQl ApprOGCh and Computer Science (IMADA)
Original Vigenére (longer key)
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A more VlSUQl ApprOGCh and Computer Science (IMADA)

Original One-Time-Pad
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. Department of Mathematics
A more VlSUQl ApprOGCh and Computer Science (IMADA)
Original One-Time-Pad (imperfect key)
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Symmetnc Key SYStemS and Computer Science (IMADA)

+ Caesar-Cipher
. Vigenere i
* One-Time Pad

 (IDEA)
* Blowfish
- AES
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Symmetric Key Systems

SDU

+ Caesar-Cipher
. Vigenere i
* One-Time Pad

 (IDEA)
* Blowfish
- AES

Department of Mathematics
and Computer Science (IMADA)

Problem:
Both sides need to know a shared secret key.

How do we securely communicate the key?

Solution:
Use public key cryptography:

« Use a public key for encryption.

+ Use a private (secret) key for decryption.

16/61
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Public Key Cryptography

Bob — 2 keys —PKB,SKB

PKg — Bob’s public key
SKg — Bob’s private (secret) key

For Alice to send m to Bob, To decrypt ¢, Bob computes:
to encrypt m, Alice computes: r = D(c, SKg).
¢ = E(m, PKg). r=m

It must be “hard” to compute m from (c, PKj).

It must be “hard” to compute SKg from PKpg.

SDU/{‘ 17/61



Introduction to Number Theory

Definition
Suppose a,b € Z, a > 0.

Suppose dc € Z s.t. b = ac.
Then a divides b: a | b.

ais a factor of b.

b is a multiple of a.

e 1 f means e does not divide f.

SDU

Department of Mathematics
and Computer Science (IMADA)

Theorem
a,b,cc Z. Then

1. ifa|b and a|c, then a|(b + c),
2. ifalb, then albc Vc € Z, and
3. ifalband b

¢, then ajc.

18/61



Introduction to Number Theory

peZ p>1

Definition (prime)
p is prime if 1 and p are the only positive
integers which divide p.

Example (primes)
2,3,5,7,11,13,17, ...

SDU~

Department of Mathematics
and Computer Science (IMADA)

Definition (composite)

p is composite if it is not prime.

Example (composites)
4,6,8,9,10,12,14,15,16, ...

19/61



Introduction to Number Theory

Theorem
acZ,deN
Junique q,r, 0 <r < ds.t.

a=dq+r
d — divisor
a — dividend
q — quotient

r — remainder = a mod d

SDU

Department of Mathematics
and Computer Science (IMADA)

Definition (relatively prime)

gcd(a, b) = greatest common
divisor of a and b
=largestd € Z s.t. dlaand d|b

If gcd(a,b) = 1, then a and b are
relatively prime or coprime.

20/61



. Department of Mathematics
Introduction to Number Theory and Computer Science (IMADA)

Definition (congruence)
a=b (mod m)— ais congruent to b modulo mif m | (a — b).

m|(a—b) = JkeZst a=b+km.

Theorem Proof.
a=>b (mod m) c=d (mod m) ke, ko s t.

Thena+c=b+d (mod m) and a=>b+km c=d+km

ac = bd (mod m). a+c=b+km+d+km

=b+d+ (ki +k)m

SDU /‘:‘ 21761



Introduction to Number Theory

Definition (congruence)
a=b (mod m)— ais congruent to b modulo mif m | (a — b).

m|(a—b) = JkeZst a=b+km.

Example
1. 15 =22 (mod 7)?
2.15=1 (mod 7)?
3. 156 =37 (mod 7)?
4. 58 =22 (mod 9)?

Department of Mathematics

and Computer Science (IMADA)
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RSA — A Public Key System

Na = pa - Qa, where pa, qa prime.

gcd(ea, (pa —1)(qa — 1)) = 1.

ex - dA =1 (mod (pA — 1)(qA — 1))

* PKa = (Na,ea)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Njy).

To decrypt:
r=D(c,SKs) = c% (mod Np).

= r=m.

SDU

Department of Mathematics
and Computer Science (IMADA)

Example
p=5q9g=11,e=3,d=27,m=38.
ThenN=p-q=5-11=55,
(p—1)(qg—1)=4-10 = 40,
ged(e,(p—1)(g—1)) = gcd(3,40) =1,
e-d=281.Soe-d=1 (mod 40).

To encrypt m: ¢ = 8% (mod 55)

= 512 (mod 55) = 17.

To decrypt ¢: r = 17?7 (mod 55)
= 1667711322168688287513535727415473
(mod 55) = 8.

22/61



RSA — A Public Key System

Na = pa - Qa, where pa, qa prime.

gcd(ea, (pa —1)(qa — 1)) = 1.

ex - dA =1 (mod (pA — 1)(qA — 1))

* PKy = (Na, €a)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Ny).

To decrypt:
r=D(c,SKs) = c% (mod Np).

SDU~

Department of Mathematics
and Computer Science (IMADA)

Why does RSA work?
Chinese Remainder Theorem and
Fermat’s Little Theorem.

23/61



Why does RSA work?

Theorem (Fermat’s Little Theorem)
pis a prime, pt a.

Then a’~'=1 (mod p)
and aP =a (mod p).

SDU

Department of Mathematics
and Computer Science (IMADA)

Example
37 =3 (mod 7)
36 =1 (mod 7)

230 =1 (mod 41)

24/61
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Why does RSA Work? and Computer Science (IMADA)

Theorem (The Chinese Remainder Theorem)

Let nq, no, ..., Nk be pairwise relatively prime. For any integers X1, X2, ..., Xk, there exists

x € Z s.t. x = x; (mod n;) for 1 < i < k, and this integer is uniquely determined modulo the
product N = nqny...ng.

X=x1 (mod ny)

X=X (mod ny)

X=Xk (mod ng)

S X=X1=Xp=---=X¢ (mod N = nyny...ng)

SDU /‘:‘ 25/61
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Correctness of RSA
Consider r = D(E(m, PKa), SKa).
Note 3k s.t. eads =1+ k(pA — 1)(qA — 1)

r=(m (mod Nz))% (mod Np) = mea® = meada = m+k(Pa=1(@=1) (mod Nj).

Consider r (mod pa). Use Fermat’s little theorem.
r=mitkea—1)(@a-1) = m. (m(PA—1))k(C7A—1) =m-1%@—1) =m (mod pA)

Consider r (mod qa). Use Fermat's little theorem.
r = mitkea—1)(0a=1) = m. (m(QA*”)k(PA*‘]) =m-1ka=1) = m (mod qA)

Apply the Chinese Remainder Theorem:
gcd(pa,qa) =1, = r =m (mod N,).

SDU /‘:‘ 27/61



Department of Mathematics
Why does RSA Work? and Computer Science (IMADA)

x=xy (mod nq) r=m (mod p)
X=x2 (mod ny) r=m (mod q)
%
—=X=x1=x2 (mod N=nny) —r=m=m (mod N = pq)

We consider the special case where ny = p and n, = q are two primes (hence N = pq),
and where x4 = X, = m.

Clearly, m=m (mod p) and m = m (mod q) for any m.
So since r fulfills r = m (mod p) and r = m (mod q), then r = m (mod N).

In particular, 0 < r,m < N —1, so we must have r = m.

SDU~
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Department of Mathematics
Why does RSA Work? and Computer Science (IMADA)

Correctness of RSA
Consider r = D(E(m, PKa), SKa).
Note 3k s.t. eads =1+ k(pA — 1)(qA — 1)

r=(m (mod Nz))% (mod Np) = mea® = meada = m+k(Pa=1(@=1) (mod Nj).

Consider r (mod pa). Use Fermat’s little theorem.
r=mitkea—1)(@a-1) = m. (m(PA—1))k(C7A—1) =m-1%@—1) =m (mod pA)

Consider r (mod qa). Use Fermat's little theorem.
r = mitkea—1)(0a=1) = m. (m(QA*”)k(PA*‘]) =m-1ka=1) = m (mod qA)

Apply the Chinese Remainder Theorem:
gcd(pa,qa) =1, = r =m (mod N,).

SDU /\:‘ 29/61



Security of RSA

Na = pa - Qa, where pa, qa prime.

gcd(ea, (pa —1)(qa — 1)) = 1.

ex - dA =1 (mod (pA — 1)(qA — 1))

* PKy = (Na, €a)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Ny).

To decrypt:
r=D(c,SKs) = c% (mod Np).

= r=m.

SDU~

Department of Mathematics
and Computer Science (IMADA)

RSA problem:
Given ¢ and PKy = (Na, ea), find m
such that:

c=m* (mod Np).

This is believed to be hard to solve for
large values.

30/61



Security of RSA

Na = pa - Qa, where pa, qa prime.

gcd(ea, (pa —1)(qa — 1)) = 1.

ex - dA =1 (mod (pA — 1)(qA — 1))

* PKa = (Na,ea)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Ny).

To decrypt:
r=D(c,SKs) = c% (mod Np).

= r=m.

SDU

Department of Mathematics
and Computer Science (IMADA)

The primes pa and gx are kept secret
with dj.

What happens if Eve can factor Ny?

Then she can find p, and ga.
From them and e,4, she finds dj4.

Then she can decrypt just like Alice.

Factoring must be hard!

30/61



Factoring

Theorem
N composite = N has a prime divisor < v/N.

procedure FACTOR(N)
fori=2to v/N do
if j divides N then
return (i, N/i) > divisor found
end if
end for
return -1 > divisor not found
end procedure

Corollary

Department of Mathematics

and Computer Science (IMADA)

There is an algorithm for factoring N that does O(v/N) tests of divisibility.

SDU
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Department of Mathematics

FGCtorl ng and Computer Science (IMADA)

Check all possible divisors between 2 and v/N.
Not finished in your grandchildren’s life time for N with 3072 bits.

Problem:
The length of the input is n = [log,(N + 1)].

So the running time is O(2"/2) — exponential.

Open Problem:
Does there exist a polynomial time factoring algorithm?

Use primes which are at least 2048 (or 3072) bits long.
So 22047 < Pa,qa < 22048 — S0 pa ~ 10616_

SDU /‘:‘ 32/61



. Department of Mathematics
RSA —A PUbIIC Key SyStem and Computer Science (IMADA)

Na = pa - qa, where pa, ga prime. How do we implement RSA?
gcd(ea, (pa— 1)(ga—1)) = 1. We need to encrypt and decrypt:

compute a¥ (mod n).
ex - dA =1 (mod (pA — 1)(qA — 1))

* PKa = (Na,€a) Example

« SKy = (Na, da) p=5qg=11,e=3d=27,m=8.
To encrypt: Then N = 55.
c:E(m,PKA) = m°A (mod NA) e-d=81.
To decrypt: Soe-d=1 (mod4-10).

r=D(c,SKs) = c% (mod Np).

To encrypt m: ¢ = 8% (mod 55) = 17.

- r=m To decrypt ¢: r = 17?7 (mod 55) = 8.

SDU/:‘ 33/61



RSA — A Public Key System

Na = pa - Qa, where pa, qa prime.

gcd(ea, (pa —1)(qa — 1)) = 1.

ex - dA =1 (mod (pA — 1)(qA — 1))

* PKa = (Na,ea)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Njy).

To decrypt:
r=D(c,SKs) = c% (mod Np).

= r=m.

SDU

Department of Mathematics
and Computer Science (IMADA)

Example
p=5q9g=11,e=3,d=27,m=38.
ThenN=p-q=5-11=55,
(p—1)(qg—1)=4-10 = 40,
ged(e,(p—1)(g—1)) = gcd(3,40) =1,
e-d=281.Soe-d=1 (mod 40).

To encrypt m: ¢ = 8% (mod 55)

= 512 (mod 55) = 17.

To decrypt ¢: r = 17?7 (mod 55)
= 1667711322168688287513535727415473
(mod 55) = 8.

34/61



. . Department of Mathematics
MOdUIGr Exponentla‘tlon and Computer Science (IMADA)

Theorem
For all nonnegative integers, b,c,m, b- ¢ (mod m) = (b (mod m))- (¢ (mod m)) (mod m).

Example

a® (mod n) = a-a? (mod n) = (a (mod n))(a? (mod n)) (mod n).

8% (mod 55) =8-82 (mod 55)
=8-64 (mod 55)

=8-9 (mod 55)
=72 (mod 55)
=17

= Computing modulo often keeps the numbers (relatively) small!

SDU/{. 35/61



Department of Mathematics
and Computer Science (IMADA)

RSA — Encryption/Decryption

We need to encrypt and decrypt: compute a* (mod n).

a’? (mod n) = a-a (mod n) — 1 modular multiplication
a® (mod n)=a-(a-a (mod n)) (mod n) — 2 mod mults

This is too many!
ea-da=1 (mod (pA — 1)(qA — 1))
pa and ga have > 2048 bits each.

So at least one of e4 and d4 has > 2048 bits.

To either encrypt or decrypt would need > 22947 ~ 10°'¢ operations
(age of the universe: 4.3 - 10" seconds).

SDU/:‘ 36/61



. . Department of Mathematics
RSA - Encryptlon/Decryptlon and Computer Science (IMADA)

We need to encrypt and decrypt: compute a* (mod n).

a? (mod n) = a-a (mod n) — 1 modular multiplication
a® (mod n)=a-(a-a (mod n)) (mod n) — 2 mod mults

How do you calculate a* (mod n) with less than 3 mod mults?
a* (mod n) = (& (mod n))? (mod n) — 2 mod mults

In general: a?¢ (mod n)?
a®*s (mod n) = (a* (mod n))? (mod n)

In general: g2+ (mod n)?
a®**1 (mod n) = a- ((a° (mod n))? (mod n)) (mod n)

SDU/:‘ 37/61



Department of Mathematics

MOdUIGr Exponentla‘tlon and Computer Science (IMADA)

procedure ExP(a,k,n) > Compute a* (mod n)

if kK < 0 then return -1 > Error

if kK = 0 then return 1 To compute 3% (mod 7): Exp(3,6,7)

if Kk = 1 then return a (mod n) c2 <Exp(3,3,7)

if k is odd then c1 <Exp(3,2,7)
¢y + Exp(a,k—1,n) ¢, <—Exp(3,1,7)
return (mod n) 3 (mod 7) =3

end.if C2-C2 (modn)=3-3 (mod 7) =2

if k is even then a-ci (modn)=3-2 (mod7) =6
C2 «+ ExP(a, k/2,n) C2-C2 (mod n) = (6-6) (mod 7) =1
return (mod n)

end if

end procedure

SDU /‘:‘ 38/61



Department of Mathematics

MOdUIGr Exponentla‘tlon and Computer Science (IMADA)

procedure ExP(a,k,n) > Compute a* (mod n)
if kK < 0 then return -1 > Error How many modular multiplications?

if kK = 0 then return 1
if kK = 1 then return a (mod n)

Divide exponent by 2 every other time.

if k is odd then How many times can we do that?
¢1 + Exp(a,k —1,n) |log, (k)] — So at most 2|log, (k)| modular
return a- ¢, (mod n) multiplications.
end if o )
if k is even then This is quite cheap!
¢y + ExP(a, k/2,n) > We can compute modular exponentiation
return ¢, - ¢, (mod n) efficiently using square-and-multiply and
end if frequent modulo operations.

end procedure

SDU /{. 38/61



RSA — A Public Key System

Na = pa - Qa, where pa, qa prime.

gcd(ea, (pa —1)(qa — 1)) = 1.

ex - dA =1 (mod (pA — 1)(qA — 1))

* PKa = (Na,ea)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Ny).

To decrypt:
r=D(c,SKs) = c% (mod Np).

= r=m.

SDU~

Department of Mathematics
and Computer Science (IMADA)

Use Ny = 35 e4 = 11 to create keys.
What are py and g4?

Whatis da? Try dy = 11 and check it.
Encrypt 4. Decrypt the result.

39/61



Greatest Common Divisor

Na = pa - Qa, where pa, qa prime.

ged(ea, (pa—1)(ga—1)) = 1.
ex - dA =1 (mod (pA — 1)(qA — 1))

* PKa = (Na,ea)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Ny).

To decrypt:
r=D(c,SKs) = c% (mod Np).

= r=m.

SDU~

Department of Mathematics
and Computer Science (IMADA)

How do we implement RSA?

We need to find: e4, da.

ged(ea, (pa — 1)(ga — 1)) =1.
ea-da=1 (mod (pa—1)(qa—1)).

Choose random ey.
Check that:

ged(ea, (pa—1)(ga—1)) = 1.

Find d4 such that:

ea - dA =1 (mod (pA — 1)(qA — 1))

40761



. . Department of Mathematics
The Extended Euclidean Algorithm and Computer Science (IMADA)

Theorem
a,beN. Is,teZs.t sa+tb=gcd(a,b).

Proof.

Let d be the smallest positive integerin D = {xa+ yb | x,y € Z}.

deD = d=x'a+ybforsome x|y’ € Z.

gcd(a, b)|a and gcd(a, b)|b, so gcd(a, b)|x’a, gcd(a, b)|y’b, and gecd(a, b)| (x'a+ y'b = d).
We will show that d|gcd(a, b), so d = gcd(a, b).

Suppose a = dq + r with 0 < r < d and some q.

r = a-—dq
= a—q(xXa+y'b)
= (1-qx)a—(ay)b
=reb
r < d, d is smallest positive integerin D = r =0 = d|a. Similarly, one can show that d|b.
Therefore, d|gcd(a, b). O
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The Extended Euclidean Algorithm and Computer Science (IMADA)

How do you find d, s and t?

Letd = gcd(a,b). Write bas b =aq +rwith0 <r < a.
Then, d|b = d|(aq +r).
Also, dla = d|(aq) = d|((aq+r)—aq) = d|r = d|a, d|b, d|(a mod b).

Letd’ = gcd(a,r) = ged(a, b — aq).
Then, d’la = d’|(aq)
Also, d’|(b—aq) = d'|((b—aq)+aq) = d'|b= d'|a, d’|(a mod b), d'|b.

Thus, gcd(a,b) = ged(a, b (mod a)) = gcd(b (mod a), a).
We can reduce to a “smaller” problem =-. Extended Euclidean Algorithm
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Example
Compute s and t such thats-6 +t-9 = gcd(6,9):

9=0-6+1-9
6=1-64+0-9

gcd(6,9) = ged(9 mod 6, 6)

9-1.6=(0-6+1-9)—1(1-6+0-9)
3=-1.-6+1-9=gcd(6,9)
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do(—b So(—o to%']
di + a S1(—1 t1<—0

n<«1
while d, > 0 do
begin
n«~n+1
Qn < |dn—2/dn_1]
dn < dn—2 — Qndn_1
Sn < Sp—2 — QnSp—1
th < th—2 — Qnln—1
end
returns < s, ¢, t+t,_1, gcd(a,b)+ dp_4
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Finding multiplicative inverses modulo m:
Givenaand m, find x s.t. a-x =1 (mod m). Examples:

Calculate the following:
Should also find a k, s.t. ax = 1 + km.

So solve for an s in an equation sa + tm = 1. 1. gcd(6,9)

2. s and t such that
This can be done if ged(a, m) = 1. s-6+t-9=gcd(6,9)
Just use the Extended Euclidean Algorithm. 3. ged(15,23)

4. s and f such that
s-15+1t-23 = gcd(15,23)

If the result, s, is negative, add m to s.
Now, for s’ = s + m, we have
(s —m)a+tm=1 (mod m).
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Primality Testing

Na = pa - Qa, where pa, qa prime.

gcd(ea, (pa —1)(qa — 1)) = 1.

ex - dA =1 (mod (pA — 1)(qA — 1))

* PKa = (Na,ea)
° SKA = (NA,dA)

To encrypt:
¢ =E(m,PKs) = m° (mod Ny).

To decrypt:
r=D(c,SKs) = c% (mod Np).

= r=m.

SDU~
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How do we implement RSA?
We need to find: pa, ga — large primes.

Choose numbers at random and check if
they are prime?
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1. How many random integers of length 1024 are prime?

Theorem (Prime Number Theorem)
About X numbers < x are prime.

Inx

So, about 2 9 mtegers of length 1024 are prime.
= We expect to test about 709 numbers before finding a prime with 1024 bits.

(This holds because the expected number of tries until a “success”, when the probability of
“success” is p, is 1/p.)

2. How fast can we test if a number is prime?
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Primality Test — Method 1

Sieve of Eratosthenes:

Use lists to track multiples of primes:

2 3 456 7 8 9 10 N1

3 5 7 9 11
5 7 11
7 11

12

13
13
13
13

14

15
15

16

17
17
17
17

18

Department of Mathematics

and Computer Science (IMADA)

19 20 21
19 21
19
19

21024 ~ 10398 — more than the number of atoms in universe (1078 to 1082).

SDU
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procedure CHECKPRIME(n)
fori=2to v/ndo
if i divides n then

return 1 > divisor found
end if
end for
return -1 > divisor not found

end procedure

The same as factoring.

Check all possible divisors between 2 and /n.
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Miller-Rabin Primality Test and Computer Science (IMADA)
Recall:
o Fermat test:
Theorem (F'ermaF s Little Theorem) procedure PRIME(n)
Suppose p is a prime. fori=1tordo
Thenforall1<a<p—1, Choose randoma € {1,2,...,n—1}

if a1 (mod n) # 1 then

ab~’ dp)=1.
(mod p) return composite
Use a randomized primality test: end if
end for
Miller-Rabin primality test: return probably prime
Starts with Fermat test: end procedure
2% (mod 15) =4 # 1.
So 2 is a witness that 15 is not prime. Does not work well for some numbers!
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Definition (Carmichael Numbers)
A composite n such that

forallac {1,2,...,n—1}st gcd(a,n) =1, a ' (mod n) =1
is called a Carmichael number.

Example
561=3-11-17

Only 241 out of 560 numbers are prime-witnesses for 561.

It is likely that Fermat’s test does not reveil 561 as prime for several attempts.

For Carmichael numbers with large prime factors, this becomes even more significant.
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Miller-Rabin Primality Test

Theorem
If p is prime,

V1 (mod p) = {x | x* (mod p) = 1} = {1,p — 1}.

If p has > 1 distinct factors, 1 has at least 4
square roots.

Example
V1 (mod 15) = {1,4,11,14}

SDU

Department of Mathematics
and Computer Science (IMADA)

Example
Taking square roots of 1 (mod 561):

50%° (mod 561)
5028 (mod 561)
500 (mod 561)
507° (mod 561) =1

50% (mod 561) = 560

1
1
1

2560 (mod 561) =1
2280 (mod 561) =1
240 (mod 561) = 67

2 is a witness that 561 is composite.
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Miller-Rabin Primality Test

procedure MILLERRABIN(n, r)
Calculate odd msuch thatn—1=2%-m
fori=1tordo
Choose randoma € {1,2,...,n— 1}
if @' (mod n) # 1 then return composite
if a"~1/2 (mod n) = n — 1 then continue
if a"~1/2 (mod n) # 1 then return composite
if a’~1/4 (mod n) = n — 1 then continue
if a"~1/4 (mod n) # 1 then return composite

if @™ (mod n) = n— 1 then continue
if a” (mod n) # 1 then return composite
end for
return probably prime
end procedure
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Miller-Rabin Primality Test and Computer Science (IMADA)

Theorem
If n is composite, at most 1/4 of the a’s with 1 < a < n — 1 will not end in
“return composite” during an iteration of the for-loop.

This means that with r iterations, a composite n will survive to “return probably prime” with
probability at most (1/4)". For e.g. r = 100, this is less than (1/4)'%0 = 1/2200 < 1/108°,

A prime n will always survive to “return probably prime”.
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Conclusions about Primality Testing and Computer Science (IMADA)

. Miller—Rabin is a practical primality test.
. There is a less practical deterministic primality test.
. Randomized algorithms are useful in practice.

. Algebra is used in primality testing.

a A WO N -

. Number theory is not useless.
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Combining Symmetric and Public Key Systems and Computer Science (IMADA)

Public key systems are slow!

Solution:
Use symmetric key system for large message.
Encrypt only session key with public key system.

To encrypt a message m to send to Bob:
* Choose a random session key k for a symmetric key system (e.g., AES).
» Encrypt k with Bob’s public key — result k.
* Encrypt m with kK — result m,.
» Send k. and m, to Bob.

How does Bob decrypt? Why is this efficient?
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Suppose Alice wants to sign a document m such that:

* no one else could forge her signature and

« it is easy for others to verify her signature.

Note m has arbitrary length.
RSA is used on fixed length messages.

Alice uses a cryptographically secure hash function h, such that:

- for any message m’, h(m’) has a fixed length (e.g., 512 bits) and
+ it is “hard” for anyone to find two messages (m4, m) such that h(m4) = h(my).
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Then Alice “decrypts” h(m) with her secret RSA key (Na, da):

s=(h(m)* (mod Ny).

Bob verifies her signature using her public RSA key (Na, e) and h:

c=5% (mod N,).

He accepts if and only if
h(m) = c.

This works because s (mod Nj) =

((h(m))®)*+ (mod Na) = ((h(m))*)*  (mod Na) = h(m).
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Use of Cryptography

Data in transit:
* websites,
¢ emails,

e chat,

Data at rest:
« disc encryption,

* program or data
obfuscation,

SDU~

Authentication:
* passports,
* NemID,
* biometry,

Rights management:
* media access,

« feature activation,

Department of Mathematics
and Computer Science (IMADA)

Privacy:

+ data mining on
anonymized data,

* age verification,

Anonymity:
 voting systems,
* bidding systems,

.
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Further Reading (if interested)

“The Code Book”
Simon Singh

SDU
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Christof Paar
Jan Pelzl

Understanding
Cryptography

ATextbook for Students and Practitioners

“Understanding Cryptography”
Christof Paar, Jan Pelzl
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XKCD — Security

A CRYPTO NERD'S

Department of Mathematics
and Computer Science (IMADA)

IMAGINATION ¢

HIS LAPTORS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CLUSTER To CRACK. \T-

No Goop! IT'S
HO"I&- BT 'R‘SN

E\HL PLHN
1S FOLED! ™~

| ACTUALLY HAPPEN:

WHAT WoULD

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEJ.lS U5 THE PASSWORD.

GOT IT,

“/Q

SDU
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