Cryptography, Number Theory, and RSA

 Introduction to Computer ScienceRuben Niederhagen
November 2021

Department of Mathematics and Computer Science (IMADA)

Outline

- Symmetric key cryptography
- Public key cryptography
- Introduction to number theory
- RSA
- Correctness of RSA
- Modular exponentiation
- Greatest common divisor
- Primality testing
- Digital signatures with RSA
- Combining symmetric and public key systems

SDU웅

Cryptography vs. Cryptanalysis

SDU:

Why is Cryptography helpful?

- A system has formal or informal security requirements.
- The requirements include security goals for protecting assets.
- "The data must not be accessible by a third party."
- "It must be ensured, that the data comes from device X."
- ...
- These security goals can be reached by the use of cryptographic primitives and protocols (security mechanisms).
- Cryptography is necessary for security, but not sufficient.

SDU

Confidentiality

- Information must not be accessible by third parties.
\Rightarrow Encryption

TOP SECRET

SDU

Integrity

- The correctness of information (data is not modified).
\rightarrow Detection of manipulation.
\Rightarrow Cryptographic Hash Function
 05 ac $6083185021011221095 c 2 c 594 e$ cf ce 1c 91 f9 606655 e6 b2 cc 359991 cc 8 e cc 78 a4 97 b9 d1 8d 1e dd 3e 9e e8 4d c0 e0 ff fe $4 d 209 b 0 e a 0$ fa $752 b 1807$ cf $4 c$ dc $396 d$ e5 ca e9 eb 47 1c 79 e5 ea 87 d3 de 7d ac ec 6869 f5 aa 19 bb 42 bb 9 e ff dd 2 f cb f6 b0 11 bb 33 32 0a 0b 43 e3 7c b6 be 9b 56 6e de eb f7 1 f cc cb 2b ba $674241202675437543939 b 901 b$ 2b Ob 44 ff 6a b2 1026 4d c4 dc 4d 5494 d8 48 15 e9 a1 936929 7d 82 fe 88 3e 27 1d 95 3e f6 a6 7973 bc 43 bd $4 d$ be 949 e 1e fd 7 b 8644 e8 $245 a 82$ ed $4 b 7 b$ db 63 b1 3d ff bb f6 7f 1e 28 ce f1 $317 d 816 e$ a6 Od 1823 bd f1 28 c6 e3 f4 f8 bf e8 27 f5 e6 3c aa b3 e1 5 f ce 4190 cf fe 3 e 98 fe 9 b 3e $3703 \mathrm{c} 373 \mathrm{f7} \mathrm{fb} 418 \mathrm{e} 3 \mathrm{e}$ ad 24 06 b1 b1 f4 ca 344 c b6 6849 f9 1 f 8 e fa ff 2 c d0 3c d2 42 4e 62 3c 4c 1a c9 66 ba $036 b 6528$ 9 e 8 b 9288 f4 165941 e6 a3 e4 5d 7a 123 f a9 b2 50 b6 83749033 f8 66 2d $39098 d 8 c$ d0 f1 2417 a5 84 9c e7 12 e9 a4 8564 Of 8 e 918 f 27 42 3e de 5a 089 b c8 f6 b0 49 ac 855 d 62 a7 c9 6056 c1 4e b3 12564173 e1 65 3e 85 ef c0 94 Of ef 4976 bc $437 a 480 b$ bd 40 2a c8 3e f8 1c

Authenticity

- Provable validity and credibility of data and subjects.
\Rightarrow Data:
- Message Authentication Code
- Digital Signature
\rightarrow Often depends on integrity.
\Rightarrow Subjects:
- Authentication
- Authorization
\rightarrow Verifier authenticates proofer.
-..--BEGIN PGP SIGNATURE--
Comment: This signature is for the .tar version of the archive Comment: git archive --format tar .-prefix=linux-4.18.16/ v4.18.16 Comment: git version 2.19.1
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+0Nu9yGCSaT4FAlvK3c8ACgkQONu9yGCS aT5iCg/9GI/DfM4YtquZYttppVxjgBlryJng3+H3avf2EaIMn50v+SNhQRvbn2vl aVmjHxyHGOZsqz23MJ3X2j2UMfMUg5tl7IcdQ6rYw4kCb/Mp76m+fZytteKpDltN WGdy0sJ7bRhhbhAb4uU5MDKqks593HPUHntJzbiN57VITKHlc20D/8DAF/fuy jSu P9EvP2a@gqEK0Ga0FY7Jiyp8ezo7oJCvA86PXo0686tHcY912rUzVXOoUhjHULcA xE4gbaRAMKWZaW+itq/f5YWFovdUT5ay6mpBhse4pxgYHSFpVMWWCAd9BiPNBWN8 9ppsLXOaGsR2+MGQCZTAsl/0smBXFI3YZFkvjw2mQf0HptCyWC8qyaIzivFjh+0V VKvIsvpTGQOoP7hxcj0kKJdIdogqiwgTV1HuxECdTuhxBMesiMgL1ZcKF2T/P5pP RhyEnRoJfzjiPkkz/DaPOMtP59wcb7PYzwQVzeQP2MXQD8+KyJwF6EYDhhlDwJVt fBGpoxGYDGySxgA1ux/Uf/nhvEriolpSzQvowdk/RDXFLZYFI2sxWptWnCuNLhw vaYy4enugrF3rjL20vav/1i0ZQ9043nIVj +8uimahN8ZI +w9GCipfVoMuBwaJtxD QU8CGOJhJqOXTJCoogiS+9B0Xz/n7YM3S1X0Pt75tUj5nUXZNgM=
$=/ 5 \mathrm{LG}$
...--END PGP SIGNATURE

Non-Repudiation

- Guarantee of reliability of actions.
- A subject cannot deny an applied action afterwards.
\Rightarrow Digital Signature

SDU:

Department of Mathematics and Computer Science (IMADA)

Security Goals		Security Mechanisms
Confidentiality	\rightarrow	Encryption
Integrity	\rightarrow	Cryptographic Hash Function
Authenticity	\rightarrow	Message Authentication Code, Digital Signature
Non-Repudiation	\rightarrow	Digital Signature
	\rightarrow	

What is encryption?

- Every key $k \in \mathcal{K}$ of a key space \mathcal{K} uniquely defines an encryption function $E_{k}: \mathcal{M} \rightarrow \mathcal{C}$ is a bijection from a message space \mathcal{M} to a ciphertext space \mathcal{C}, called the encryption function.
- For each key $d \in \mathcal{K}, D_{k}: \mathcal{C} \rightarrow \mathcal{M}$ denotes a bijection from \mathcal{C} to \mathcal{M}, called the decryption function.
- Decryption is the inverse of encryption, i.e. $D_{k}\left(E_{k}(m)\right)=m$.

SDU:

Caesar Cipher (with key $=3$)

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
O	1	2	3	4	5	6	7	8	9	10	11	12	13	14
D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

P	Q	R	S	T	U	V	W	X	Y	Z	Æ	\varnothing	\AA
15	16	17	18	19	20	21	22	23	24	25	26	27	28
S	T	U	V	W	X	Y	Z	Æ	\varnothing	\AA	A	B	C
18	19	20	21	22	23	24	25	26	27	28	0	1	2

$$
c_{i}=m_{i}+3(\bmod 29)
$$

SDUóo

Symmetric Key Systems

Suppose the following was encrypted using a Caesar cipher and the Danish alphabet. The key is unknown.

ZQOØQOØ, RI.

What does it say?

What does this say about how many keys should be possible?

SDU웅

Kerckhoffs's Principle

- Requirement for modern crypto systems.
- The security of a scheme must not depend on the secrecy of the scheme but on the secret key.
\Rightarrow Large key space.
\Rightarrow Effort to break a scheme must be higher than the resources of an adversary.
\Rightarrow The scheme and implementation should be publicly available and auditable.

Journal
SCIENCES MIILITAIRES.
$\frac{\text { SUIENCES MILITAIRES. }}{\text { Firrier } 1883 .}$

La CRYPTOGRAPHIE MILITAIRE ${ }^{1}$

Vigenère Cipher

- Vigenère cipher shifts the input by a rotating key of some length m :

$$
c_{i}=m_{i}+k_{i \bmod m} \quad(\bmod n)
$$

- Example for key $\{3,1,4\}$:

Input	H	e	I	I	o	\ldots
Key	3	1	4	3	1	\ldots
Output	K	f	p	0	p	\ldots

One-Time-Pad

- The One-Time-Pad (OTP) uses an infinitely long key:

$$
c_{i}=m_{i}+k_{++} \quad(\bmod n)
$$

- The same key index must never be used again.
- All ciphertexts are independent from all plain texts and from each other.
- If the key of the OTP is uniform and perfectly random, the cipher is unbreakable.
\rightarrow Note: If a Vigenère key has the same length as the message and each key is used only once, it is the same as the OTP.

SDU

A more Visual Approach

Original

Caesar

SDU Ó

A more Visual Approach
Department of Mathematics and Computer Science (IMADA)

Original

Vigenère

SDU:

A more Visual Approach

Original

Vigenère (longer key)

SDU:

A more Visual Approach
Department of Mathematics and Computer Science (IMADA)

Original

One-Time-Pad

SDU:-

A more Visual Approach

Original

Department of Mathematics and Computer Science (IMADA)

One-Time-Pad (imperfect key)

SDU:

Symmetric Key Systems

- Gaesar Cipher
- Vigenère Cipher
- One-Time Pad
- Enigma
- DES
- Triple DES
- (IDEA)
- Blowfish
- AES

SDU웅

Symmetric Key Systems

- Gaesar Cipher
- Vigenère Cipher
- One-Time Pad
- Enigma
- DES
- Triple DES
- (IDEA)
- Blowfish
- AES

Problem:

Both sides need to know a shared secret key.
How do we securely communicate the key?

Solution:

Use public key cryptography:

- Use a public key for encryption.
- Use a private (secret) key for decryption.

Public Key Cryptography

Bob - 2 keys $-P K_{B}, S K_{B}$
$P K_{B}$ - Bob's public key
$S K_{B}$ - Bob's private (secret) key
For Alice to send m to Bob, to encrypt m, Alice computes: $c=E\left(m, P K_{B}\right)$.

To decrypt c, Bob computes:
$r=D\left(c, S K_{B}\right)$.
$r=m$

It must be "hard" to compute m from $\left(c, P K_{B}\right)$.
It must be "hard" to compute $S K_{B}$ from $P K_{B}$.

SDU

Definition

Suppose $a, b \in \mathbb{Z}, a>0$.
Suppose $\exists c \in \mathbb{Z}$ s.t. $b=a c$.
Then a divides $b: a \mid b$.
a is a factor of b.
b is a multiple of a.
$e \nmid f$ means e does not divide f.

Theorem

$a, b, c \in \mathbb{Z}$. Then

1. if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$,
2. if $a \mid b$, then $a \mid b c \forall c \in \mathbb{Z}$, and
3. if $a \mid b$ and $b \mid c$, then $a \mid c$.

$$
p \in \mathbb{Z}, p>1
$$

Definition (prime)

p is prime if 1 and p are the only positive integers which divide p.

Example (primes)

$2,3,5,7,11,13,17, \ldots$

Definition (composite)

p is composite if it is not prime.

Example (composites)

$4,6,8,9,10,12,14,15,16, \ldots$

SDU

Theorem

$a \in \mathbb{Z}, d \in N$
\exists unique $q, r, 0 \leq r<d$ s.t.

$$
a=d q+r
$$

d-divisor
a - dividend
q - quotient
r - remainder $=a \bmod d$

Definition (relatively prime)
$\operatorname{gcd}(a, b)=$ greatest common divisor of a and b $=\operatorname{largest} d \in \mathbb{Z}$ s.t. $d \mid a$ and $d \mid b$

If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime or coprime.

Introduction to Number Theory

Definition (congruence)

$a \equiv b(\bmod m)$ - a is congruent to b modulo m if $m \mid(a-b)$.
$m \mid(a-b) \Rightarrow \exists k \in \mathbb{Z}$ s.t. $a=b+k m$.

Theorem

$a \equiv b(\bmod m) \quad c \equiv d(\bmod m)$
Then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$.

Proof.

$$
\begin{aligned}
& \exists k_{1}, k_{2} \text { s.t. } \\
& a=b+k_{1} m \quad c=d+k_{2} m \\
& a+c=b+k_{1} m+d+k_{2} m \\
& =b+d+\left(k_{1}+k_{2}\right) m
\end{aligned}
$$

Definition (congruence)

$a \equiv b(\bmod m)$ - a is congruent to b modulo m if $m \mid(a-b)$.
$m \mid(a-b) \Rightarrow \exists k \in \mathbb{Z}$ s.t. $a=b+k m$.

Example

1. $15 \equiv 22(\bmod 7)$?
2. $15 \equiv 1(\bmod 7)$?
3. $15 \equiv 37(\bmod 7)$?
4. $58 \equiv 22(\bmod 9)$?

SDU

RSA - A Public Key System

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:
$c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt:
$r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$\Rightarrow r=m$.

Example

$p=5, q=11, e=3, d=27, m=8$.
Then $N=p \cdot q=5 \cdot 11=55$,
$(p-1)(q-1)=4 \cdot 10=40$,
$\operatorname{gcd}(e,(p-1)(q-1))=\operatorname{gcd}(3,40)=1$,
$e \cdot d=81$. So $e \cdot d \equiv 1(\bmod 40)$.
To encrypt $m: c=8^{3}(\bmod 55)$
$=512(\bmod 55)=17$.
To decrypt $c: r=17^{27}(\bmod 55)$
$=1667711322168688287513535727415473$
$(\bmod 55)=8$.

RSA - A Public Key System

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:

$$
c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right) .
$$

Why does RSA work?

Chinese Remainder Theorem and Fermat's Little Theorem.

To decrypt:

$$
r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)
$$

$$
\Rightarrow r=m
$$

SDU

Why does RSA work?

Theorem (Fermat's Little Theorem)

p is a prime, $p \nmid a$.
Then $a^{p-1} \equiv 1(\bmod p)$
and $a^{p} \equiv a(\bmod p)$.

Example

$3^{7} \equiv 3(\bmod 7)$
$3^{6} \equiv 1(\bmod 7)$
$23^{40} \equiv 1(\bmod 41)$

SDU:

Why does RSA work?

Theorem (The Chinese Remainder Theorem)

Let $n_{1}, n_{2}, \ldots, n_{k}$ be pairwise relatively prime. For any integers $x_{1}, x_{2}, \ldots, x_{k}$, there exists $x \in \mathbb{Z}$ s.t. $x \equiv x_{i}\left(\bmod n_{i}\right)$ for $1 \leq i \leq k$, and this integer is uniquely determined modulo the product $N=n_{1} n_{2} \ldots n_{k}$.

$$
\begin{gathered}
x \equiv x_{1} \quad\left(\bmod n_{1}\right) \\
x \equiv x_{2} \quad\left(\bmod n_{2}\right) \\
\cdots \\
x \equiv x_{k} \quad\left(\bmod n_{k}\right) \\
\rightarrow x \equiv x_{1} \equiv x_{2} \equiv \cdots \equiv x_{k} \quad\left(\bmod N=n_{1} n_{2} \ldots n_{k}\right)
\end{gathered}
$$

Why does RSA work?

Correctness of RSA

Consider $r=D\left(E\left(m, P K_{A}\right), S K_{A}\right)$.
Note $\exists k$ s.t. $e_{A} d_{A}=1+k\left(p_{A}-1\right)\left(q_{A}-1\right)$.
$r \equiv\left(m^{e_{A}}\left(\bmod N_{A}\right)\right)^{d_{A}}\left(\bmod N_{A}\right) \equiv m^{e_{A} d_{A}} \equiv m^{e_{A} d_{A}} \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)}\left(\bmod N_{A}\right)$.
Consider $r\left(\bmod p_{A}\right)$. Use Fermat's little theorem.
$r \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)} \equiv m \cdot\left(m^{\left(p_{A}-1\right)}\right)^{k\left(q_{A}-1\right)} \equiv m \cdot 1^{k\left(q_{A}-1\right)} \equiv m\left(\bmod p_{A}\right)$.
Consider $r\left(\bmod q_{A}\right)$. Use Fermat's little theorem.
$r \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)} \equiv m \cdot\left(m^{\left(q_{A}-1\right)}\right)^{k\left(p_{A}-1\right)} \equiv m \cdot 1^{k\left(p_{A}-1\right)} \equiv m\left(\bmod q_{A}\right)$.
Apply the Chinese Remainder Theorem:
$\operatorname{gcd}\left(p_{A}, q_{A}\right)=1, \Rightarrow r \equiv m\left(\bmod N_{A}\right)$.

SDU웅

Why does RSA work?

$$
\begin{array}{rlrl}
x \equiv x_{1} & \left(\bmod n_{1}\right) & r \equiv m & (\bmod p) \\
x \equiv x_{2} \quad\left(\bmod n_{2}\right) & & r \equiv m \quad(\bmod q) \\
& \rightarrow & \\
\rightarrow x \equiv x_{1} \equiv x_{2}\left(\bmod N=n_{1} n_{2}\right) & \rightarrow r \equiv m \equiv m \quad(\bmod N=p q)
\end{array}
$$

We consider the special case where $n_{1}=p$ and $n_{2}=q$ are two primes (hence $N=p q$), and where $x_{1}=x_{2}=m$.

Clearly, $m \equiv m(\bmod p)$ and $m \equiv m(\bmod q)$ for any m.
So since r fulfills $r \equiv m(\bmod p)$ and $r \equiv m(\bmod q)$, then $r \equiv m(\bmod N)$.

In particular, $0 \leq r, m \leq N-1$, so we must have $r=m$.

SDU〒o

Why does RSA work?

Correctness of RSA

Consider $r=D\left(E\left(m, P K_{A}\right), S K_{A}\right)$.
Note $\exists k$ s.t. $e_{A} d_{A}=1+k\left(p_{A}-1\right)\left(q_{A}-1\right)$.
$r \equiv\left(m^{e_{A}}\left(\bmod N_{A}\right)\right)^{d_{A}}\left(\bmod N_{A}\right) \equiv m^{e_{A} d_{A}} \equiv m^{e_{A} d_{A}} \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)}\left(\bmod N_{A}\right)$.
Consider $r\left(\bmod p_{A}\right)$. Use Fermat's little theorem.
$r \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)} \equiv m \cdot\left(m^{\left(p_{A}-1\right)}\right)^{k\left(q_{A}-1\right)} \equiv m \cdot 1^{k\left(q_{A}-1\right)} \equiv m\left(\bmod p_{A}\right)$.
Consider $r\left(\bmod q_{A}\right)$. Use Fermat's little theorem.
$r \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)} \equiv m \cdot\left(m^{\left(q_{A}-1\right)}\right)^{k\left(p_{A}-1\right)} \equiv m \cdot 1^{k\left(p_{A}-1\right)} \equiv m\left(\bmod q_{A}\right)$.
Apply the Chinese Remainder Theorem:
$\operatorname{gcd}\left(p_{A}, q_{A}\right)=1, \Rightarrow r \equiv m\left(\bmod N_{A}\right)$.

SDU:

Security of RSA

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:
$c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt:
$r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$\Rightarrow r=m$.

RSA problem:

Given c and $P K_{A}=\left(N_{A}, e_{A}\right)$, find m such that:

$$
c=m^{e_{A}} \quad\left(\bmod N_{A}\right)
$$

This is believed to be hard to solve for large values.

SDU웅

Security of RSA

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:

$$
c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right) .
$$

To decrypt:
$r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$\Rightarrow r=m$.

The primes p_{A} and q_{A} are kept secret with d_{A}.

What happens if Eve can factor N_{A} ?
Then she can find p_{A} and q_{A}.
From them and e_{A}, she finds d_{A}.

Then she can decrypt just like Alice.

Factoring must be hard!

Factoring

Theorem

N composite $\Rightarrow N$ has a prime divisor $\leq \sqrt{N}$.

```
procedure FACTOR(N)
    for \(i=2\) to \(\sqrt{N}\) do
        if \(i\) divides \(N\) then
            return ( \(i, N / i\) ) \(\triangleright\) divisor found
        end if
    end for
    return-1 \(\triangleright\) divisor not found
end procedure
```


Corollary

There is an algorithm for factoring N that does $O(\sqrt{N})$ tests of divisibility.

SDU

Factoring

Check all possible divisors between 2 and \sqrt{N}.
Not finished in your grandchildren's life time for N with 3072 bits.

Problem:

The length of the input is $n=\left\lceil\log _{2}(N+1)\right\rceil$.
So the running time is $O\left(2^{n / 2}\right)$ - exponential.

Open Problem:

Does there exist a polynomial time factoring algorithm?
Use primes which are at least 2048 (or 3072) bits long.
So $2^{2047} \leq p_{A}, q_{A}<2^{2048}-$ so $p_{A} \approx 10^{616}$.

SDU웅

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:
$c=E\left(m, P K_{A}\right)=\underline{m^{e_{A}}}\left(\bmod N_{A}\right)$.
To decrypt:
$r=D\left(c, S K_{A}\right)=\underline{c^{d_{A}}}\left(\bmod N_{A}\right)$.
$\Rightarrow r=m$.

How do we implement RSA?

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.

Example

$p=5, q=11, e=3, d=27, m=8$.
Then $N=55$.
$e \cdot d=81$.
So $e \cdot d \equiv 1(\bmod 4 \cdot 10)$.
To encrypt $m: c=8^{3}(\bmod 55)=17$.
To decrypt $c: r=17^{27}(\bmod 55)=8$.

SDU

RSA - A Public Key System

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:
$c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt:
$r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$\Rightarrow r=m$.

Example

$p=5, q=11, e=3, d=27, m=8$.
Then $N=p \cdot q=5 \cdot 11=55$,
$(p-1)(q-1)=4 \cdot 10=40$,
$\operatorname{gcd}(e,(p-1)(q-1))=\operatorname{gcd}(3,40)=1$,
$e \cdot d=81$. So $e \cdot d \equiv 1(\bmod 40)$.
To encrypt $m: c=8^{3}(\bmod 55)$
$=512(\bmod 55)=17$.
To decrypt $c: r=17^{27}(\bmod 55)$
$=1667711322168688287513535727415473$
$(\bmod 55)=8$.

Modular Exponentiation

Theorem

For all nonnegative integers, $b, c, m, b \cdot c(\bmod m)=(b(\bmod m)) \cdot(c(\bmod m))(\bmod m)$.

Example

$$
a^{3}(\bmod n)=a \cdot a^{2}(\bmod n)=(a(\bmod n))\left(a^{2}(\bmod n)\right)(\bmod n)
$$

$$
\begin{aligned}
8^{3} \quad(\bmod 55) & =8 \cdot 8^{2} \quad(\bmod 55) \\
& =8 \cdot 64 \quad(\bmod 55) \\
& =8 \cdot 9 \quad(\bmod 55) \\
& =72 \quad(\bmod 55) \\
& =17
\end{aligned}
$$

\Rightarrow Computing modulo often keeps the numbers (relatively) small!

SDU

RSA - Encryption/Decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod \operatorname{mults}$
Guess: $k-1$ modular multiplications.
This is too many!
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.
p_{A} and q_{A} have ≥ 2048 bits each.
So at least one of e_{A} and d_{A} has ≥ 2048 bits.
To either encrypt or decrypt would need $\geq 2^{2047} \approx 10^{616}$ operations (age of the universe: $4.3 \cdot 10^{17}$ seconds).

SDU웅

RSA - Encryption/Decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod$ mults
How do you calculate $a^{4}(\bmod n)$ with less than $3 \bmod$ mults?
$a^{4}(\bmod n) \equiv\left(a^{2}(\bmod n)\right)^{2}(\bmod n)-2 \bmod$ mults
In general: $a^{2 s}(\bmod n)$?
$a^{2 s}(\bmod n) \equiv\left(a^{s}(\bmod n)\right)^{2}(\bmod n)$
In general: $a^{2 s+1}(\bmod n)$?
$a^{2 s+1}(\bmod n) \equiv a \cdot\left(\left(a^{s}(\bmod n)\right)^{2}(\bmod n)\right)(\bmod n)$

SDU:-

Modular Exponentiation

```
procedure \(\operatorname{ExP}(a, k, n) \quad\) Compute \(a^{k}(\bmod n)\)
    if \(k<0\) then return \(-1 \quad \triangleright\) Error
    if \(k=0\) then return 1
    if \(k=1\) then return \(a(\bmod n)\)
    if \(k\) is odd then
        \(c_{1} \leftarrow \operatorname{EXP}(a, k-1, n)\)
        return \(a \cdot c_{1}(\bmod n)\)
    end if
    if \(k\) is even then
        \(c_{2} \leftarrow \operatorname{EXP}(a, k / 2, n)\)
        return \(C_{2} \cdot C_{2}(\bmod n)\)
    end if
end procedure
```

```
To compute \(3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)\)
```

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$
$c_{2} \leftarrow \operatorname{Exp}(3,3,7)$
$c_{2} \leftarrow \operatorname{Exp}(3,3,7)$
$c_{1} \leftarrow \operatorname{Exp}(3,2,7)$
$c_{1} \leftarrow \operatorname{Exp}(3,2,7)$
$c_{2} \leftarrow \operatorname{Exp}(3,1,7)$
$c_{2} \leftarrow \operatorname{Exp}(3,1,7)$
$3(\bmod 7)=3$
$3(\bmod 7)=3$
$c_{2} \cdot c_{2}(\bmod n)=3 \cdot 3(\bmod 7)=2$
$c_{2} \cdot c_{2}(\bmod n)=3 \cdot 3(\bmod 7)=2$
$a \cdot c_{1}(\bmod n)=3 \cdot 2(\bmod 7)=6$
$a \cdot c_{1}(\bmod n)=3 \cdot 2(\bmod 7)=6$
$c_{2} \cdot c_{2}(\bmod n)=(6 \cdot 6)(\bmod 7)=1$

```
\(c_{2} \cdot c_{2}(\bmod n)=(6 \cdot 6)(\bmod 7)=1\)
```


Modular Exponentiation

```
procedure ExP(a,k,n) \triangleright Compute ak (mod n)
    if k<0 then return -1 
    if k=0 then return 1
    if k=1 then return a (mod n)
    if }k\mathrm{ is odd then
        c
        return a\cdotc, (mod n)
    end if
    if }k\mathrm{ is even then
        c
        return }\mp@subsup{c}{2}{}\cdot\mp@subsup{c}{2}{}(\operatorname{mod}n
    end if
end procedure
```

How many modular multiplications?
Divide exponent by 2 every other time.
How many times can we do that?
$\left\lfloor\log _{2}(k)\right\rfloor$ - So at most $2\left\lfloor\log _{2}(k)\right\rfloor$ modular multiplications.

This is quite cheap!
\Rightarrow We can compute modular exponentiation
efficiently using square-and-multiply and
frequent modulo operations.

RSA - A Public Key System

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:
$c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt:
$r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$\Rightarrow r=m$.

Use $N_{A}=35 e_{A}=11$ to create keys.
What are p_{A} and q_{A} ?
What is d_{A} ? Try $d_{A}=11$ and check it.
Encrypt 4. Decrypt the result.

Greatest Common Divisor

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:

$$
c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right) .
$$

$$
\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1
$$

Find d_{A} such that:

$$
e_{A} \cdot d_{A} \equiv 1 \quad\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)
$$

The Extended Euclidean Algorithm

Theorem

$$
a, b \in N . \exists s, t \in \mathbb{Z} \text { s.t. } s a+t b=\operatorname{gcd}(a, b)
$$

Proof.

Let d be the smallest positive integer in $D=\{x a+y b \mid x, y \in \mathbb{Z}\}$.
$d \in D \Rightarrow d=x^{\prime} a+y^{\prime} b$ for some $x^{\prime}, y^{\prime} \in \mathbb{Z}$.
$\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$, so $\operatorname{gcd}(a, b)\left|x^{\prime} a, \operatorname{gcd}(a, b)\right| y^{\prime} b$, and $\operatorname{gcd}(a, b) \mid\left(x^{\prime} a+y^{\prime} b=d\right)$.
We will show that $d \mid \operatorname{gcd}(a, b)$, so $d=\operatorname{gcd}(a, b)$.
Suppose $a=d q+r$ with $0 \leq r<d$ and some q.

$$
\begin{aligned}
r & =a-d q \\
& =a-q\left(x^{\prime} a+y^{\prime} b\right) \\
& =\left(1-q x^{\prime}\right) a-\left(q y^{\prime}\right) b
\end{aligned}
$$

$\Rightarrow r \in D$
$r<d$, d is smallest positive integer in $D \Rightarrow r=0 \Rightarrow d \mid a$. Similarly, one can show that $d \mid b$. Therefore, $d \mid \operatorname{gcd}(a, b)$.

SDU:

The Extended Euclidean Algorithm

How do you find d, s and t ?

Let $d=\operatorname{gcd}(a, b)$. Write b as $b=a q+r$ with $0 \leq r<a$.
Then, $d|b \Rightarrow d|(a q+r)$.
Also, $d|a \Rightarrow d|(a q) \Rightarrow d|((a q+r)-a q) \Rightarrow d| r \Rightarrow d|a, d| b, d \mid(a \bmod b)$.

Let $d^{\prime}=\operatorname{gcd}(a, r)=\operatorname{gcd}(a, b-a q)$.
Then, $d^{\prime}\left|a \Rightarrow d^{\prime}\right|(a q)$
Also, $d^{\prime}\left|(b-a q) \Rightarrow d^{\prime}\right|((b-a q)+a q) \Rightarrow d^{\prime}\left|b \Rightarrow d^{\prime}\right| a, d^{\prime}\left|(a \bmod b), d^{\prime}\right| b$.

Thus, $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b(\bmod a))=\operatorname{gcd}(b(\bmod a), a)$.
We can reduce to a "smaller" problem \Rightarrow. Extended Euclidean Algorithm

SDU

The Extended Euclidean Algorithm

Example

Compute s and t such that $s \cdot 6+t \cdot 9=\operatorname{gcd}(6,9)$:

$$
\begin{aligned}
& 9=0 \cdot 6+1 \cdot 9 \\
& 6=1 \cdot 6+0 \cdot 9
\end{aligned}
$$

$\operatorname{gcd}(6,9)=\operatorname{gcd}(9 \bmod 6,6)$

$$
\begin{aligned}
9-1 \cdot 6 & =(0 \cdot 6+1 \cdot 9)-1(1 \cdot 6+0 \cdot 9) \\
3 & =-1 \cdot 6+1 \cdot 9=\operatorname{gcd}(6,9)
\end{aligned}
$$

SDU:

The Extended Euclidean Algorithm

$$
\begin{array}{lll}
d_{0} \leftarrow b & s_{0} \leftarrow 0 & t_{0} \leftarrow 1 \\
d_{1} \leftarrow a & s_{1} \leftarrow 1 & t_{1} \leftarrow 0 \\
n \leftarrow 1 & &
\end{array}
$$

while $d_{n}>0$ do
begin

$$
\begin{aligned}
& n \leftarrow n+1 \\
& q_{n} \leftarrow\left\lfloor d_{n-2} / d_{n-1}\right\rfloor \\
& d_{n} \leftarrow d_{n-2}-q_{n} d_{n-1} \\
& s_{n} \leftarrow s_{n-2}-q_{n} s_{n-1} \\
& t_{n} \leftarrow t_{n-2}-q_{n} t_{n-1}
\end{aligned}
$$

end
return $s \leftarrow s_{n-1}, \quad t \leftarrow t_{n-1}, \quad \operatorname{gcd}(a, b) \leftarrow d_{n-1}$

SDU

The Extended Euclidean Algorithm

Finding multiplicative inverses modulo m :

Given a and m, find x s.t. $a \cdot x \equiv 1(\bmod m)$.
Should also find a k, s.t. $a x=1+k m$.
So solve for an s in an equation $s a+t m=1$.
This can be done if $\operatorname{gcd}(a, m)=1$. Just use the Extended Euclidean Algorithm.

If the result, s, is negative, add m to s. Now, for $s^{\prime}=s+m$, we have $\left(s^{\prime}-m\right) a+t m \equiv 1(\bmod m)$.

Examples:

Calculate the following:

1. $\operatorname{gcd}(6,9)$
2. s and t such that

$$
s \cdot 6+t \cdot 9=\operatorname{gcd}(6,9)
$$

3. $\operatorname{gcd}(15,23)$
4. s and t such that

$$
s \cdot 15+t \cdot 23=\operatorname{gcd}(15,23)
$$

Primality Testing

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt:
$c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt:
$r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$\Rightarrow r=m$.

How do we implement RSA?

We need to find: p_{A}, q_{A} - large primes.

Choose numbers at random and check if they are prime?

Questions

1. How many random integers of length 1024 are prime?

Theorem (Prime Number Theorem)

About $\frac{x}{\ln x}$ numbers $<x$ are prime.
So, about $\frac{2^{1024}}{709}$ integers of length 1024 are prime.
\Rightarrow We expect to test about 709 numbers before finding a prime with 1024 bits.
(This holds because the expected number of tries until a "success", when the probability of "success" is p, is $1 / p$.)
2. How fast can we test if a number is prime?

SDUO

Primality Test - Method 1

Sieve of Eratosthenes:

Use lists to track multiples of primes:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
3		5		7		9		11		13		15		17	19		21	\ldots	
		5		7				11		13				17		19			\ldots
				7			11	13	13			17		19			\ldots		

$2^{1024} \approx 10^{308}$ - more than the number of atoms in universe (10^{78} to 10^{82}).
So we cannot even write out this list!

SDU:

Primality Test - Method 2

```
procedure CHECKPRIME(n)
    for i}=2\mathrm{ to }\sqrt{}{n}\mathrm{ do
        if i}\mathrm{ divides }n\mathrm{ then
            return 1 } \triangleright divisor foun
        end if
    end for
    return-1 }\triangleright\mathrm{ divisor not found
end procedure
```

The same as factoring.
Check all possible divisors between 2 and \sqrt{n}.
Our sun will die before we're done!

SDU

Miller-Rabin Primality Test

Recall:
Theorem (Fermat's Little Theorem)
Suppose p is a prime.
Then for all $1 \leq a \leq p-1$,

$$
a^{p-1} \quad(\bmod p) \equiv 1
$$

Use a randomized primality test:
Miller-Rabin primality test:
Starts with Fermat test:

$$
2^{14}(\bmod 15) \equiv 4 \neq 1
$$

So 2 is a witness that 15 is not prime.

```
Fermat test:
    procedure PRIME(n)
        for }i=1\mathrm{ to }r\mathrm{ do
        Choose random a\in{1,2,\ldots,n-1}
        if }\mp@subsup{a}{}{n-1}(\operatorname{mod}n)\not\equiv1\mathrm{ then
            return composite
        end if
        end for
        return probably prime
end procedure
```


Problem:

Does not work well for some numbers!

Miller-Rabin Primality Test

Definition (Carmichael Numbers)

A composite n such that

$$
\text { for all } a \in\{1,2, \ldots, n-1\} \text { s.t. } \operatorname{gcd}(a, n)=1, \quad a^{n-1}(\bmod n) \equiv 1
$$

is called a Carmichael number.

Example

$561=3 \cdot 11 \cdot 17$
Only 241 out of 560 numbers are prime-witnesses for 561 .
It is likely that Fermat's test does not reveil 561 as prime for several attempts.
For Carmichael numbers with large prime factors, this becomes even more significant.

SDU:

Miller-Rabin Primality Test

Example

Taking square roots of $1(\bmod 561)$:

Theorem

If p is prime,
$\sqrt{1}(\bmod p)=\left\{x \mid x^{2}(\bmod p)=1\right\}=\{1, p-1\}$.
If p has >1 distinct factors, 1 has at least 4 square roots.

Example
$\sqrt{1}(\bmod 15)=\{1,4,11,14\}$

$$
\begin{aligned}
& 50^{560}(\bmod 561) \equiv 1 \\
& 50^{280}(\bmod 561) \equiv 1 \\
& 50^{140}(\bmod 561) \equiv 1 \\
& 50^{70}(\bmod 561) \equiv 1 \\
& 50^{35}(\bmod 561) \equiv 560 \\
& \\
& 2^{560}(\bmod 561) \equiv 1 \\
& 2^{280}(\bmod 561) \equiv 1 \\
& 2^{140}(\bmod 561) \equiv 67
\end{aligned}
$$

2 is a witness that 561 is composite.

Miller-Rabin Primality Test

```
procedure MillerRabin( \(n, r\) )
    Calculate odd \(m\) such that \(n-1=2^{s} \cdot m\)
    for \(i=1\) to \(r\) do
        Choose random \(a \in\{1,2, \ldots, n-1\}\)
        if \(a^{n-1}(\bmod n) \not \equiv 1\) then return composite
        if \(a^{(n-1) / 2}(\bmod n) \equiv n-1\) then continue
    if \(a^{(n-1) / 2}(\bmod n) \not \equiv 1\) then return composite
    if \(a^{(n-1) / 4}(\bmod n) \equiv n-1\) then continue
    if \(a^{(n-1) / 4}(\bmod n) \not \equiv 1\) then return composite
        if \(a^{m}(\bmod n) \equiv n-1\) then continue
        if \(a^{m}(\bmod n) \not \equiv 1\) then return composite
    end for
    return probably prime
end procedure
```


Miller-Rabin Primality Test

Theorem

If n is composite, at most $1 / 4$ of the a's with $1 \leq a \leq n-1$ will not end in "return composite" during an iteration of the for-loop.

This means that with r iterations, a composite n will survive to "return probably prime" with probability at most $(1 / 4)^{r}$. For e.g. $r=100$, this is less than $(1 / 4)^{100}=1 / 2^{200}<1 / 10^{60}$.

A prime n will always survive to "return probably prime".
\Rightarrow We can test for primality quite fast!

SDU:

Conclusions about Primality Testing

1. Miller-Rabin is a practical primality test.
2. There is a less practical deterministic primality test.
3. Randomized algorithms are useful in practice.
4. Algebra is used in primality testing.
5. Number theory is not useless.

SDU웅

Combining Symmetric and Public Key Systems

Problem:

Public key systems are slow!

Solution:

Use symmetric key system for large message.
Encrypt only session key with public key system.
To encrypt a message m to send to Bob:

- Choose a random session key k for a symmetric key system (e.g., AES).
- Encrypt k with Bob's public key — result k_{e}.
- Encrypt m with k - result m_{e}.
- Send k_{e} and m_{e} to Bob.

How does Bob decrypt? Why is this efficient?

SDU

Digital Signatures with RSA

Suppose Alice wants to sign a document m such that:

- no one else could forge her signature and
- it is easy for others to verify her signature.

Note m has arbitrary length.
RSA is used on fixed length messages.
Alice uses a cryptographically secure hash function h, such that:

- for any message $m^{\prime}, h\left(m^{\prime}\right)$ has a fixed length (e.g., 512 bits) and
- it is "hard" for anyone to find two messages $\left(m_{1}, m_{2}\right)$ such that $h\left(m_{1}\right)=h\left(m_{2}\right)$.

SDU웅

Digital Signatures with RSA

Then Alice "decrypts" $h(m)$ with her secret RSA key $\left(N_{A}, d_{A}\right)$:

$$
s=(h(m))^{d_{A}} \quad\left(\bmod N_{A}\right) .
$$

Bob verifies her signature using her public RSA key $\left(N_{A}, e_{A}\right)$ and h :

$$
c=s^{e_{A}} \quad\left(\bmod N_{A}\right) .
$$

He accepts if and only if

$$
h(m)=c .
$$

This works because $s^{e_{A}}\left(\bmod N_{A}\right)=$

$$
\left((h(m))^{d_{A}}\right)^{e_{A}} \quad\left(\bmod N_{A}\right)=\left((h(m))^{e_{A}}\right)^{d_{A}} \quad\left(\bmod N_{A}\right)=h(m) .
$$

SDU

Use of Cryptography

Data in transit:

- websites,
- emails,
- chat,

Data at rest:

- disc encryption,
- program or data obfuscation,

Authentication:

- passports,
- NemID,
- biometry,

Rights management:

- media access,
- feature activation, - ...

Privacy:

- data mining on anonymized data,
- age verification,

Anonymity:

- voting systems,
- bidding systems,
- ...

Further Reading (if interested)

"The Code Book" Simon Singh

"Understanding Cryptography" Christof Paar, Jan Pelzl

XKCD - Security

