Questions and Answers

Exercise 1(Casesar Cipher)

a) What does "ZQOØQOØ, RI." say?
b) What does this say about how many keys should be possible?

Solution 1

- "RIGTIGT, JA."
- There must be so many keys that it is infeasible to ever enumerate and try them.

Exercise 2(Introduction to Number Theory)

a) $15 \equiv 22(\bmod 7)$?
b) $15 \equiv 1(\bmod 7)$?
c) $15 \equiv 37(\bmod 7)$?
d) $58 \equiv 22(\bmod 9)$?

Solution 2

- $15 \equiv 22 \equiv 1(\bmod 7) \Longrightarrow 15=2 \cdot 7+1 ; 22=3 \cdot 7+1 \quad \rightarrow$ correct
- $15 \equiv 1(\bmod 7) \Longrightarrow 15=2 \cdot 7+1 \quad \rightarrow$ correct
- $15 \equiv 37(\bmod 7) \Longrightarrow 37=35+2=5 \cdot 7+2 \rightarrow$ wrong
- $58 \equiv 22(\bmod 9) \Longrightarrow 58=54+4=6 \cdot 9+4 ; 22=18+4=2 \cdot 9+4 \rightarrow$ correct

Exercise 3(RSA Example)

Compute RSA keys using $N=35, e=11$.
a) What are p_{A} and q_{A} ?
b) What is d ? Try $d=11$ and check it.
c) Encrypt 4. Decrypt the result.

Solution 3

- $p_{A}=5$ and $q_{A}=7$
$\Rightarrow\left(p_{A}-1\right)\left(q_{A}-1\right)=24$
- $e_{A}=11$ and $d_{A}=11$. $e_{A} \cdot d_{A} \equiv 121 \equiv 1(\bmod 24)$
- $m=4$
$c=m^{e_{A}}\left(\bmod N_{A}\right)=4^{11}(\bmod 35)=9$
$r=c^{d_{A}}\left(\bmod N_{A}\right)=9^{11}(\bmod 35)=4$

Exercise 4(RSA Inversion)

Calculate the following:
a) $\operatorname{gcd}(6,9)$
b) s and t such that $s \cdot 6+t \cdot 9=\operatorname{gcd}(6,9)$
C) $\operatorname{gcd}(15,23)$
d) s and t such that $s \cdot 15+t \cdot 23=\operatorname{gcd}(15,23)$

Solution 4

- $\operatorname{gcd}(6,9)=3$ and s and t such that $s \cdot 6+t \cdot 9=\operatorname{gcd}(6,9)$:

n	q	d	s	t
0	-	$b=9$	0	1
1	-	$a=6$	1	0
2	$\lfloor 9 / 6\rfloor=1$	$9-1 \cdot 6=3$	$0-1 \cdot 1=-1$	$1-1 \cdot 0=1$
3	$\lfloor 6 / 3\rfloor=2$	$6-2 \cdot 3=0$		
$s=-1, t=1, \operatorname{gcd}(6,9)=3$				
$s \cdot 6+t \cdot 9=-1 \cdot 6+1 \cdot 9=\operatorname{gcd}(6,9)=3$				

- $\operatorname{gcd}(15,23)$ and s and t such that $s \cdot 15+t \cdot 23=\operatorname{gcd}(15,23)$:

n	q	d	s	t
0	-	$b=23$	0	1
1	-	$a=15$	1	0
2	$\lfloor 23 / 15=1\rfloor$	$23-1 \cdot 15=8$	$0-1 \cdot 1=-1$	$1-1 \cdot 0=1$
3	$\lfloor 15 / 8=1\rfloor$	$15-1 \cdot 8=7$	$1-1 \cdot(-1)=2$	$0-1 \cdot 1=-1$
4	$\lfloor 8 / 7=1\rfloor$	$8-1 \cdot 7=1$	$-1-1 \cdot 2=-3$	$1-1 \cdot(-1)=2$
5	$\lfloor 7 / 1=7\rfloor$	$7-7 \cdot 1=0$		
$s=-3, t=2, \operatorname{gcd}(15,23)=1$				
$s \cdot 15+t \cdot 23=-3 \cdot 15+2 \cdot 23=\operatorname{gcd}(15,23)=1$				
$\Rightarrow-3 \cdot 15=1(\bmod 23)$				
$\Rightarrow-3+23 \cdot 15=1(\bmod 23)$				
$\Rightarrow 20 \cdot 15=1(\bmod 23)$				

Exercise 5(Combining Symmetric and Public Key Systems)

How does Bob decrypt? Why is this efficient?

Solution 5

Bob first decrypt the RSA-encrypted encapsulates key and then the actual message using that key.
This is efficient, since only a 128-256 bit long symmetric key needs to be encrypted using RSA and not a message of arbitrary length.

