

Questions and Answers

Exercise 1(Casesar Cipher)

- a) What does "ZQOØQOØ, RI." say?
- b) What does this say about how many keys should be possible?

Solution 1

- "RIGTIGT, JA."
- There must be so many keys that it is infeasible to ever enumerate and try them.

Exercise 2(Introduction to Number Theory)

- a) $15 \equiv 22 \pmod{7}$?
- **b)** $15 \equiv 1 \pmod{7}$?
- c) $15 \equiv 37 \pmod{7}$?
- d) $58 \equiv 22 \pmod{9}$?

Solution 2

- $15 \equiv 22 \equiv 1 \pmod{7} \implies 15 = 2 \cdot 7 + 1; \ 22 = 3 \cdot 7 + 1 \rightarrow \text{correct}$
- $15 \equiv 1 \pmod{7} \implies 15 = 2 \cdot 7 + 1 \rightarrow \text{correct}$
- $15 \equiv 37 \pmod{7} \implies 37 = 35 + 2 = 5 \cdot 7 + 2 \rightarrow \text{wrong}$
- $58 \equiv 22 \pmod{9} \implies 58 = 54 + 4 = 6 \cdot 9 + 4; \ 22 = 18 + 4 = 2 \cdot 9 + 4 \rightarrow \text{correct}$

Exercise 3(RSA Example)

Compute RSA keys using N = 35, e = 11.

- a) What are p_A and q_A ?
- b) What is d? Try d = 11 and check it.
- c) Encrypt 4. Decrypt the result.

Solution 3

•
$$p_A = 5$$
 and $q_A = 7$
 $\Rightarrow (p_A - 1)(q_A - 1) = 24$
• $e_A = 11$ and $d_A = 11$.
 $e_A \cdot d_A \equiv 121 \equiv 1 \pmod{24}$

• m = 4 $c = m^{e_A} \pmod{N_A} = 4^{11} \pmod{35} = 9$ $r = c^{d_A} \pmod{N_A} = 9^{11} \pmod{35} = 4$ Questions and Answers

Exercise 4(RSA Inversion)

Calculate the following:

- **a)** gcd(6,9)
- b) s and t such that $s \cdot 6 + t \cdot 9 = gcd(6, 9)$
- c) gcd(15, 23)
- d) *s* and *t* such that $s \cdot 15 + t \cdot 23 = gcd(15, 23)$

Solution 4

```
• gcd(6,9) = 3 and s and t such that s \cdot 6 + t \cdot 9 = gcd(6,9):
```

	n	q	d	s	t
	0	_	b = 9	0	1
	1	_	a = 6	1	0
	2	9/6 = 1	$9 - 1 \cdot 6 = 3 0 - 3 = 10$	$-1 \cdot 1 = -1$ $1 - 1$	$1 \cdot 0 = 1$
	3	$\lfloor 6/3 \rfloor = 2$	$6 - 2 \cdot 3 = 0$		
	s = -1, t = 1, gcd(6, 9) = 3				
$s \cdot 6 + t \cdot 9 = -1 \cdot 6 + 1 \cdot 9 = gcd(6,9) = 3$					
• $gcd(15, 23)$ and s and t such that $s \cdot 15 + t \cdot 23 = gcd(15, 23)$:					
	n	q	d	s	t
	0	_	b = 23	0	1
	1	-	a = 15	1	0
	2	$\lfloor 23/15 = 1 \rfloor$	$23 - 1 \cdot 15 = 8$	$0 - 1 \cdot 1 = -1$	$1 - 1 \cdot 0 = 1$
	3	$\lfloor 15/8 = 1 \rfloor$	$15 - 1 \cdot 8 = 7$	$1 - 1 \cdot (-1) = 2$	$0 - 1 \cdot 1 = -1$
	4	$\lfloor 8/7 = 1 \rfloor$	$8 - 1 \cdot 7 = 1$	$-1 - 1 \cdot 2 = -3$	$1 - 1 \cdot (-1) = 2$
	5	$\lfloor 7/1 = 7 \rfloor$	$7 - 7 \cdot 1 = 0$		
	s = -3, t = 2, gcd(15, 23) = 1 $s \cdot 15 + t \cdot 23 = -3 \cdot 15 + 2 \cdot 23 = gcd(15, 23) = 1$				
	$\Rightarrow -3 \cdot 15 = 1 \pmod{23}$				
	$\Rightarrow -3 + 23 \cdot 15 = 1 \pmod{23}$				
	$\Rightarrow 20 \cdot 15 = 1 \pmod{23}$				

Exercise 5 (Combining Symmetric and Public Key Systems)

How does Bob decrypt? Why is this efficient?

Solution 5

Bob first decrypt the RSA-encrypted encapsulates key and then the actual message using that key.

This is efficient, since only a 128-256 bit long symmetric key needs to be encrypted using RSA and not a message of arbitrary length.