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Exercise 1(Casesar Cipher)

What does “ZQOØQOØ, RI.” say?a)

What does this say about how many keys should be possible?b)

Solution 1

• “RIGTIGT, JA.”

• There must be so many keys that it is infeasible to ever enumerate and try them.

Exercise 2(Introduction to Number Theory)

15 ≡ 22 (mod 7)?a)

15 ≡ 1 (mod 7)?b)

15 ≡ 37 (mod 7)?c)

58 ≡ 22 (mod 9)?d)

Solution 2

• 15 ≡ 22 ≡ 1 (mod 7) =⇒ 15 = 2 · 7 + 1; 22 = 3 · 7 + 1 → correct

• 15 ≡ 1 (mod 7) =⇒ 15 = 2 · 7 + 1 → correct

• 15 ≡ 37 (mod 7) =⇒ 37 = 35 + 2 = 5 · 7 + 2 → wrong

• 58 ≡ 22 (mod 9) =⇒ 58 = 54 + 4 = 6 · 9 + 4; 22 = 18 + 4 = 2 · 9 + 4 → correct

Exercise 3(RSA Example)

Compute RSA keys using N = 35, e = 11.

What are pA and qA?a)

What is d? Try d = 11 and check it.b)

Encrypt 4. Decrypt the result.c)

Solution 3

• pA = 5 and qA = 7

⇒ (pA − 1)(qA − 1) = 24

• eA = 11 and dA = 11.

eA · dA ≡ 121 ≡ 1 (mod 24)

• m = 4

c = meA (mod NA) = 411 (mod 35) = 9

r = cdA (mod NA) = 911 (mod 35) = 4
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Exercise 4(RSA Inversion)

Calculate the following:

gcd(6, 9)a)

s and t such that s · 6 + t · 9 = gcd(6, 9)b)

gcd(15, 23)c)

s and t such that s · 15 + t · 23 = gcd(15, 23)d)

Solution 4

• gcd(6, 9) = 3 and s and t such that s · 6 + t · 9 = gcd(6, 9):

n q d s t

0 – b = 9 0 1

1 – a = 6 1 0

2 b9/6c = 1 9− 1 · 6 = 3 0− 1 · 1 = −1 1− 1 · 0 = 1

3 b6/3c = 2 6− 2 · 3 = 0

s = −1, t = 1, gcd(6, 9) = 3

s · 6 + t · 9 = −1 · 6 + 1 · 9 = gcd(6, 9) = 3

• gcd(15, 23) and s and t such that s · 15 + t · 23 = gcd(15, 23):

n q d s t

0 – b = 23 0 1

1 – a = 15 1 0

2 b23/15 = 1c 23− 1 · 15 = 8 0− 1 · 1 = −1 1− 1 · 0 = 1

3 b15/8 = 1c 15− 1 · 8 = 7 1− 1 · (−1) = 2 0− 1 · 1 = −1

4 b8/7 = 1c 8− 1 · 7 = 1 −1− 1 · 2 = −3 1− 1 · (−1) = 2

5 b7/1 = 7c 7− 7 · 1 = 0

s = −3, t = 2, gcd(15, 23) = 1

s · 15 + t · 23 = −3 · 15 + 2 · 23 = gcd(15, 23) = 1

⇒ −3 · 15 = 1 (mod 23)

⇒ −3 + 23 · 15 = 1 (mod 23)

⇒ 20 · 15 = 1 (mod 23)

Exercise 5(Combining Symmetric and Public Key Systems)

How does Bob decrypt? Why is this efficient?

Solution 5

Bob first decrypt the RSA-encrypted encapsulates key and then the actual message using that key.

This is efficient, since only a 128-256 bit long symmetric key needs to be encrypted using RSA and not a

message of arbitrary length.
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