
Transformations



Recall the Graphics Pipeline:

I Compose the scene from the provided models. This requires scaling,
rotation, and translation of the models.

I Define a camera position.

I Project the points of the models of the scene onto a 2D plane (given
by the camera position). The plane is identified with the screen.

I For each triangle perform rasterization: find the pixels it covers in
the screen. Interpolate any extra data (color, etc.) in the three
vertices to find data values for the pixels.

I For each of these pixels: calculate a color (shading).

I Apply the color to the pixel on screen in a suitable way (e.g. if other
triangles are closer, discard the color (using a z-buffer)).

Until rasterization, our data are essentially points.

We will see the details of all the terms in italics (and many more) later.



Recall the Graphics Pipeline:

I Compose the scene from the provided models. This requires scaling,
rotation, and translation of the models. ← TODAY

I Define a camera position.

I Project the points of the models of the scene onto a 2D plane (given
by the camera position). The plane is identified with the screen.

I For each triangle perform rasterization: find the pixels it covers in
the screen. Interpolate any extra data (color, etc.) in the three
vertices to find data values for the pixels.

I For each of these pixels: calculate a color (shading).

I Apply the color to the pixel on screen in a suitable way (e.g. if other
triangles are closer, discard the color (using a z-buffer)).

Until rasterization, our data are essentially points.

We will see the details of all the terms in italics (and many more) later.



Composing the Scene
A model (box, car, building, character,. . . ) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

E.g. translation:

Move model ⇔ move triangles ⇔ move points (vertices) ⇐ f : R3 → R3

f : R3 → R3 are functions such as f (x , y , z) =

 2xz
x + y
z + 1


Task: find the functions that we need for model transformations.



Composing the Scene
A model (box, car, building, character,. . . ) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

E.g. translation:

Move model ⇔ move triangles ⇔ move points (vertices) ⇐ f : R3 → R3

f : R3 → R3 are functions such as f (x , y , z) =

 2xz
x + y
z + 1


Task: find the functions that we need for model transformations.



Composing the Scene
A model (box, car, building, character,. . . ) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

E.g. translation:

Move model ⇔ move triangles ⇔ move points (vertices) ⇐ f : R3 → R3

f : R3 → R3 are functions such as f (x , y , z) =

 2xz
x + y
z + 1



Task: find the functions that we need for model transformations.



Composing the Scene
A model (box, car, building, character,. . . ) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

E.g. translation:

Move model ⇔ move triangles ⇔ move points (vertices) ⇐ f : R3 → R3

f : R3 → R3 are functions such as f (x , y , z) =

 2xz
x + y
z + 1


Task: find the functions that we need for model transformations.



Translation

f (x , y , z) =

x + dx
y + dy
z + dz


Note: (dx , dy , dr ) is a fixed translation vector, the point (x , y , z) is a
vertex of the model and is the input to f .



Translation

f (x , y , z) =

x + dx
y + dy
z + dz


Note: (dx , dy , dr ) is a fixed translation vector, the point (x , y , z) is a
vertex of the model and is the input to f .



Scaling

f (x , y , z) =

sx · x
sy · y
sz · z


Uniform scaling: sx = sy = sz



Scaling

f (x , y , z) =

sx · x
sy · y
sz · z


Uniform scaling: sx = sy = sz



Rotation

Euler [1775]: for every orientation of a model
there is a line l through (0,0,0) and an an-
gle φ, such that rotating φ around l gives
this orientation.

Rotation around line through origin:

f (x , y , z) =

?
?
?





Rotation

Euler [1775]: for every orientation of a model
there is a line l through (0,0,0) and an an-
gle φ, such that rotating φ around l gives
this orientation.

Rotation around line through origin:

f (x , y , z) =

?
?
?





Rotation

Euler [1775]: for every orientation of a model
there is a line l through (0,0,0) and an an-
gle φ, such that rotating φ around l gives
this orientation.

Rotation around line through origin:

f (x , y , z) =

?
?
?





Rotation

Simpler case: Rotation around z-axis.

Use formula for rotating φ round origin in 2D:

f (x , y , z) =



x · cosφ− y · sinφ
x · sinφ+ y · cosφ

z





Rotation

Simpler case: Rotation around z-axis.

Use formula for rotating φ round origin in 2D:

f (x , y , z) =



x · cosφ− y · sinφ
x · sinφ+ y · cosφ

z





Rotation

Simpler case: Rotation around z-axis.

Use formula for rotating φ round origin in 2D:

f (x , y , z) =



x · cosφ− y · sinφ
x · sinφ+ y · cosφ

z





Rotation

Simpler case: Rotation around z-axis.

Use formula for rotating φ round origin in 2D:

f (x , y , z) =

x · cosφ− y · sinφ
x · sinφ+ y · cosφ

z





Rotation

Similar: Rotation around x-axis and y -axis.

f (x , y , z) =

 x
y · cosφ− z · sinφ
y · sinφ+ z · cosφ



f (x , y , z) =

z · sinφ+ x · cosφ
y

z · cosφ− x · sinφ





Euler Angles

Theorem [Euler, 1775]: any orientation can be created as three succesive
rotations around the three coordinate axes.

The angles of the coordinate axis rotations are called Euler angles.

Using Euler angles to specify generic rotations is often intuitive, but also
has drawbacks. We will return to that later.



Proof of Formula for Rotation in 2D

1

1 (x, y)

(x′, y′) = ?

φ



Proof of Formula for Rotation in 2D

1

1 (x, y)



Proof of Formula for Rotation in 2D

1

1 (x, y)

(x , y) = x · (1, 0) + y · (0, 1)

= x · ~v1 + y · ~v2



Proof of Formula for Rotation in 2D

1

1 (x, y)

(x′, y′) = ?

φ



Proof of Formula for Rotation in 2D

1

1 (x, y)

(x′, y′) = ?

φ

(x ′, y ′) = x · ~v ′
1 + y · ~v ′

2



Proof of Formula for Rotation in 2D

1

1

φ



Proof of Formula for Rotation in 2D

1

1

φ

~v ′
1 = (cos(φ), sin(φ))

~v ′
2 = (−sin(φ), cos(φ))



Proof of Formula for Rotation in 2D

1

1

(x′, y′) = ?



Proof of Formula for Rotation in 2D

1

1

(x′, y′) = ?

(x ′, y ′) = x · ~v ′
1 + y · ~v ′

2

= x · (cos(φ), sin(φ)) + y · (−sin(φ), cos(φ))

= (x · cos(φ)− y · sin(φ), x · sin(φ) + y · cos(φ))



Interlude

2 + 3 + 4 = ?

2 + (3 + 4) or (2 + 3) + 4?

Doesn’t matter, addition is associative:

a + (b + c) = (a + b) + c



Interlude

2 + 3 + 4 = 9

2 + (3 + 4) or (2 + 3) + 4?

Doesn’t matter, addition is associative:

a + (b + c) = (a + b) + c



Interlude

2 + 3 + 4 = 9

2 + (3 + 4) or (2 + 3) + 4?

Doesn’t matter, addition is associative:

a + (b + c) = (a + b) + c



Interlude

2 + 3 + 4 = 9

2 + (3 + 4) or (2 + 3) + 4?

Doesn’t matter, addition is associative:

a + (b + c) = (a + b) + c



Interlude

2 · 3 · 4 = ?

2 · (3 · 4) or (2 · 3) · 4?

Doesn’t matter, multiplication is associative:

a · (b · c) = (a · b) · c



Interlude

2 · 3 · 4 = 24

2 · (3 · 4) or (2 · 3) · 4?

Doesn’t matter, multiplication is associative:

a · (b · c) = (a · b) · c



Interlude

2 · 3 · 4 = 24

2 · (3 · 4) or (2 · 3) · 4?

Doesn’t matter, multiplication is associative:

a · (b · c) = (a · b) · c



Interlude

2 · 3 · 4 = 24

2 · (3 · 4) or (2 · 3) · 4?

Doesn’t matter, multiplication is associative:

a · (b · c) = (a · b) · c



Interlude

2− 3− 4 =?

2− (3− 4) or (2− 3)− 4?

Does matter, subtraction is not associative:

2− (3− 4) = 3

(2− 3)− 4 = −5



Interlude

2− 3− 4 =?

2− (3− 4) or (2− 3)− 4?

Does matter, subtraction is not associative:

2− (3− 4) = 3

(2− 3)− 4 = −5



Interlude

2− 3− 4 =?

2− (3− 4) or (2− 3)− 4?

Does matter, subtraction is not associative:

2− (3− 4) = 3

(2− 3)− 4 = −5



Recap of Matrices

Matrix = 2D table of numbers:1 3 4 1
2 5 6 7
9 1 1 0


Above is a 3× 4 matrix.

Other examples: 1 3
2 5
9 1

 4
5
8

 [
7 2 6 5

]



Recap of Matrices

Matrix = 2D table of numbers:1 3 4 1
2 5 6 7
9 1 1 0


Above is a 3× 4 matrix.

Other examples: 1 3
2 5
9 1

 4
5
8

 [
7 2 6 5

]



Recap of Matrices

Matrix addition:1 6 4
2 5 7
9 1 1

+

3 2 1
4 3 2
5 4 3

 =

1 + 3 6 + 2 4 + 1
2 + 4 5 + 3 7 + 2
9 + 5 1 + 4 1 + 3

 =

 4 8 5
6 8 9

14 5 4





Recap of Matrices

Matrix multiplication:1 6 4
2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? ?
? ? ?



1 6 4
2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ? ?


33 = 2 · 1 + 5 · 2 + 7 · 31 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ?


25 = 9 · 2 + 1 · 3 + 1 · 4

Matrix multiplication is associative: A · (B · C ) = (A · B) · C .



Recap of Matrices

Matrix multiplication:1 6 4
2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? ?
? ? ?


1 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ? ?


33 = 2 · 1 + 5 · 2 + 7 · 3

1 6 4
2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ?


25 = 9 · 2 + 1 · 3 + 1 · 4

Matrix multiplication is associative: A · (B · C ) = (A · B) · C .



Recap of Matrices

Matrix multiplication:1 6 4
2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? ?
? ? ?


1 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ? ?


33 = 2 · 1 + 5 · 2 + 7 · 31 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ? ?



25 = 9 · 2 + 1 · 3 + 1 · 4
Matrix multiplication is associative: A · (B · C ) = (A · B) · C .



Recap of Matrices

Matrix multiplication:1 6 4
2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? ?
? ? ?


1 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ? ?


33 = 2 · 1 + 5 · 2 + 7 · 31 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? 25 ?


25 = 9 · 2 + 1 · 3 + 1 · 4

Matrix multiplication is associative: A · (B · C ) = (A · B) · C .



Recap of Matrices

Matrix multiplication:1 6 4
2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? ?
? ? ?


1 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? ? ?


33 = 2 · 1 + 5 · 2 + 7 · 31 6 4

2 5 7
9 1 1

 ·
3 2 1

4 3 2
5 4 3

 =

? ? ?
? ? 33
? 25 ?


25 = 9 · 2 + 1 · 3 + 1 · 4

Matrix multiplication is associative: A · (B · C ) = (A · B) · C .



Transformations via Matrices?

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any fixed matrix can induce a (linear) funktion f : R3 → R3:

f
(
x , y , z

)
= A ·

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Matrix multiplication is associative: A · (B · C ) = (A · B) · C , hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A ·B) ·C ) ·E ) · F ) ·

x
y
z

 = G ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of 5-15 transformations. Calculate
the matrix product G = ((((A · B) · C ) · E ) · F ) once.

Question: can all our needed functions be expressed as matrices?



Transformations via Matrices?

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any fixed matrix can induce a (linear) funktion f : R3 → R3:

f
(
x , y , z

)
= A ·

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z



Matrix multiplication is associative: A · (B · C ) = (A · B) · C , hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A ·B) ·C ) ·E ) · F ) ·

x
y
z

 = G ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of 5-15 transformations. Calculate
the matrix product G = ((((A · B) · C ) · E ) · F ) once.

Question: can all our needed functions be expressed as matrices?



Transformations via Matrices?

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any fixed matrix can induce a (linear) funktion f : R3 → R3:

f
(
x , y , z

)
= A ·

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Matrix multiplication is associative: A · (B · C ) = (A · B) · C , hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A ·B) ·C ) ·E ) · F ) ·

x
y
z

 = G ·

x
y
z



Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of 5-15 transformations. Calculate
the matrix product G = ((((A · B) · C ) · E ) · F ) once.

Question: can all our needed functions be expressed as matrices?



Transformations via Matrices?

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any fixed matrix can induce a (linear) funktion f : R3 → R3:

f
(
x , y , z

)
= A ·

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Matrix multiplication is associative: A · (B · C ) = (A · B) · C , hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A ·B) ·C ) ·E ) · F ) ·

x
y
z

 = G ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of 5-15 transformations. Calculate
the matrix product G = ((((A · B) · C ) · E ) · F ) once.

Question: can all our needed functions be expressed as matrices?



Transformations via Matrices?

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any fixed matrix can induce a (linear) funktion f : R3 → R3:

f
(
x , y , z

)
= A ·

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Matrix multiplication is associative: A · (B · C ) = (A · B) · C , hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A ·B) ·C ) ·E ) · F ) ·

x
y
z

 = G ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of 5-15 transformations. Calculate
the matrix product G = ((((A · B) · C ) · E ) · F ) once.

Question: can all our needed functions be expressed as matrices?



Transformations as Matrices

I Scaling

f
(
x , y , z

)
=

sxx
syy
szz

 =

sx 0 0
0 sy 0
0 0 sz

 ·
x
y
z


I Rotation angle φ around the z-axis

f
(
x , y , z

)
=

xcosφ− ysinφ
xsinφ+ ycosφ

z

 =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f
(
x , y , z

)
=

x + dx
y + dy
z + dz

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices
I Scaling

f
(
x , y , z

)
=

sxx
syy
szz

 =

sx 0 0
0 sy 0
0 0 sz

 ·
x
y
z


I Rotation angle φ around the z-axis

f
(
x , y , z

)
=

xcosφ− ysinφ
xsinφ+ ycosφ

z

 =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f
(
x , y , z

)
=

x + dx
y + dy
z + dz

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices
I Scaling

f
(
x , y , z

)
=

sxx
syy
szz

 =

sx 0 0
0 sy 0
0 0 sz

 ·
x
y
z



I Rotation angle φ around the z-axis

f
(
x , y , z

)
=

xcosφ− ysinφ
xsinφ+ ycosφ

z

 =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f
(
x , y , z

)
=

x + dx
y + dy
z + dz

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices
I Scaling

f
(
x , y , z

)
=

sxx
syy
szz

 =

sx 0 0
0 sy 0
0 0 sz

 ·
x
y
z


I Rotation angle φ around the z-axis

f
(
x , y , z

)
=

xcosφ− ysinφ
xsinφ+ ycosφ

z

 =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f
(
x , y , z

)
=

x + dx
y + dy
z + dz

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices
I Scaling

f
(
x , y , z

)
=

sxx
syy
szz

 =

sx 0 0
0 sy 0
0 0 sz

 ·
x
y
z


I Rotation angle φ around the z-axis

f
(
x , y , z

)
=

xcosφ− ysinφ
xsinφ+ ycosφ

z

 =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z



I Translation?

f
(
x , y , z

)
=

x + dx
y + dy
z + dz

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices
I Scaling

f
(
x , y , z

)
=

sxx
syy
szz

 =

sx 0 0
0 sy 0
0 0 sz

 ·
x
y
z


I Rotation angle φ around the z-axis

f
(
x , y , z

)
=

xcosφ− ysinφ
xsinφ+ ycosφ

z

 =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f
(
x , y , z

)
=

x + dx
y + dy
z + dz

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z



No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices
I Scaling

f
(
x , y , z

)
=

sxx
syy
szz

 =

sx 0 0
0 sy 0
0 0 sz

 ·
x
y
z


I Rotation angle φ around the z-axis

f
(
x , y , z

)
=

xcosφ− ysinφ
xsinφ+ ycosφ

z

 =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f
(
x , y , z

)
=

x + dx
y + dy
z + dz

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Homogeneous Coordinates

Go to 4D:

x
y
z

→

x
y
z
1



And back: 
x
y
z
w

→
x/w
y/w
z/w





Homogeneous Coordinates

Go to 4D:

x
y
z

→

x
y
z
1


And back: 

x
y
z
w

→
x/w
y/w
z/w





Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:
1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 ·

x
y
z
1

 =


x + dx
y + dy
z + dz

1



All 3x3 matrices are still available (incl. scaling and rotation):
1 2 3 0
4 5 6 0
7 8 9 0
0 0 0 1

 ·

x
y
z
1

 =


1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z

1





Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:
1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 ·

x
y
z
1

 =


x + dx
y + dy
z + dz

1



All 3x3 matrices are still available (incl. scaling and rotation):
1 2 3 0
4 5 6 0
7 8 9 0
0 0 0 1

 ·

x
y
z
1

 =


1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z

1





Projection
Projection to screen: f : R3 → R2.

Prespective projection:

Expressed as 4x4 matrix multiplication (d = −near):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

 ·

x
y
z
1

 =


x
y
z

z/d

→
xd/z
yd/z
d


So also proj. can be expressed via matrices (and homogeneous coord.).



Projection
Projection to screen: f : R3 → R2. Prespective projection:

Expressed as 4x4 matrix multiplication (d = −near):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

 ·

x
y
z
1

 =


x
y
z

z/d

→
xd/z
yd/z
d


So also proj. can be expressed via matrices (and homogeneous coord.).



Projection
Projection to screen: f : R3 → R2. Prespective projection:

Expressed as 4x4 matrix multiplication (d = −near):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

 ·

x
y
z
1

 =


x
y
z

z/d

→
xd/z
yd/z
d



So also proj. can be expressed via matrices (and homogeneous coord.).



Projection
Projection to screen: f : R3 → R2. Prespective projection:

Expressed as 4x4 matrix multiplication (d = −near):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

 ·

x
y
z
1

 =


x
y
z

z/d

→
xd/z
yd/z
d


So also proj. can be expressed via matrices (and homogeneous coord.).



Transformations in Practice

Usually, a library (such as Graphicslib3D from the textbook), offering
easy and intuitive generation of the relevant matrices, is used.

When multiplying matrices, that last mentioned is usually the rightmost,
meaning the one first affecting the vertices. Cf. the math notation
f (g(h(x))) (where h is applied first to x , then g , then f ).

Examples from Graphicslib3D:

M1.concatenate(M2)

M1.rotateZ(45.0)

This means M1 ·M2 and M1 · R, where R is the matrix rotating 45
degrees around the z-axis. Recall that on a vertex ~x , we have

(M1 ·M2) · ~x = M1 · (M2 · ~x)

So rightmost matrix in the product is applied first.

Often using a stack of matrices works well with hierarchical scenes (scene
where position of objects defined relative to each other in a hierarchical
fashion).



A Standard Consideration

Note that rotations are always around origo. To get the effect of a), a
single rotation will not work, but will give the effect of b). Instead, do as
in c) (translate to origo, rotate, translate back).

Similar considerations relate to scaling.


