

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

References

Feature Spaces and Clustering

Melih Kandemir

University of Southern Denmark

DM573, Fall 2022

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

References

Color Histograms as Feature Spaces for Representation of Images

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images Distances

Summary

A First Glimpse on Clustering

References

Color Histograms as Feature Spaces for Representation of Images Features for Images Distances Summary

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

Summary

A First Glimpse on Clustering

References

Color Histograms as Feature Spaces for Representation of Images Features for Images

Distances Summary

SDU Categories of Feature Descriptors for Images

DM573

Melih Kandemir

- Color Histograms as Feature Spaces for Representation of Images
- Features for Images
- Distances
- Summary
- A First Glimpse on Clustering
- References

- distribution of colors
- texture
- shapes (contoures)

SDU Color Histogram

DM573

Melih Kandemir

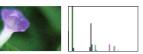
Color Histograms as Feature Spaces for Representation of Images

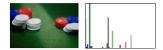
Features for Images

Distances

Summary

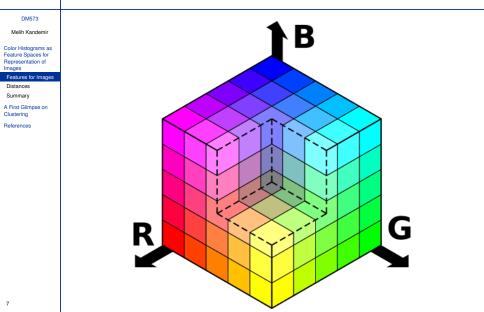
A First Glimpse on Clustering





- a histogram represents the distribution of colors over the pixels of an image
- definition of an color histogram:
 - choose a color space (RGB, HSV, HLS, ...)
 - choose number of representants (sample points) in the color space
 - possibly normalization (to account for different image sizes)

SDU Color Space Example: RGB cube



Impact of Number of Representants

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

Summary

A First Glimpse on Clustering

References

original images in full RGB space $(256^3 = 16, 777, 216)$

SDU STORES UNIVERSITE Impact of Number of Representants

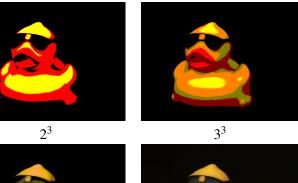
DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

- Distances
- Summary
- A First Glimpse on Clustering
- References



4³

 16^{3}

SDU STRUCTURE Impact of Number of Representants

DM573

Melih Kandemir

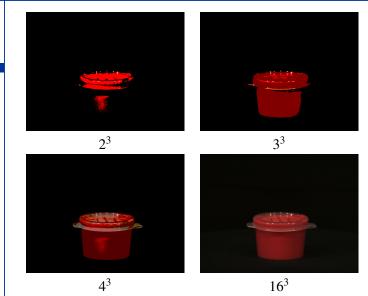
Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances Summary

ounnary

A First Glimpse on Clustering



SDU 🎓 Impact of Number of Representants SYDDANSK UNIVERSITET

DM573

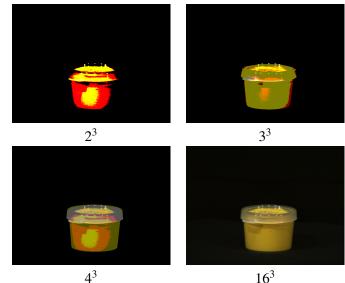
Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances Summary

A First Glimpse on Clustering



SDU 🎓 Impact of Number of Representants SYDDANSK UNIVERSITET

DM573

Melih Kandemir

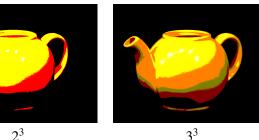
Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

Summary

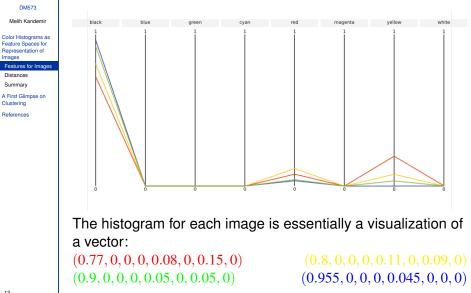
A First Glimpse on Clustering



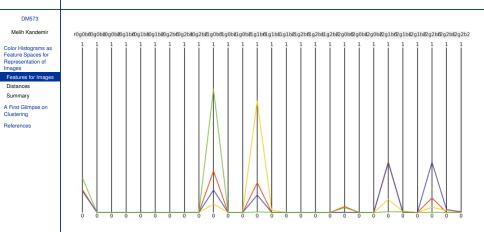
33

 16^{3}

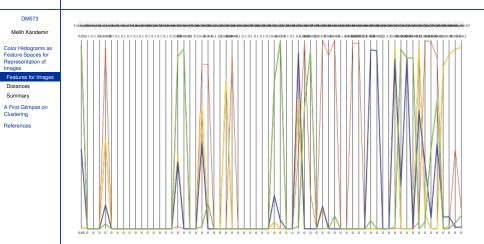
SDUA Impact of Number of Representants



SDU STRUCTURE Impact of Number of Representants



SDU STRUCTURE Impact of Number of Representants



Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

Summary

A First Glimpse on Clustering

References

Color Histograms as Feature Spaces for Representation of Images Features for Images Distances

Summary

Distances for Color Histograms

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

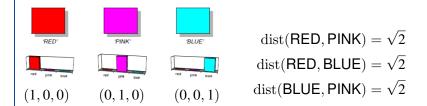
Summary

A First Glimpse on Clustering

References

Euclidean distance for images *P* and *Q* using the color histograms h_P and h_Q :

$$\operatorname{dist}(P,Q) = \sqrt{(h_P - h_Q) \cdot (h_P - h_Q)^{\mathsf{T}}}$$



A 'psychologic' distance would consider that red is (in our perception) more similar to pink than to blue.

SDU Example for the Distance Computation of Histograms

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

Summary

A First Glimpse on Clustering

$$\operatorname{dist}(P,Q) = \sqrt{(h_P - h_Q) \cdot (h_P - h_Q)^{\mathsf{T}}}$$

dist(RED, PINK) =
$$\sqrt{((1,0,0) - (0,1,0)) \cdot ((1,0,0) - (0,1,0))^{\intercal}}$$

= $\sqrt{(1,-1,0) \cdot (1,-1,0)^{\intercal}}$
= $\sqrt{(1 \cdot 1 + (-1) \cdot (-1) + 0 \cdot 0)}$
= $\sqrt{2}$

Similarity

DM573

Melih Kandemir

- Color Histograms as Feature Spaces for Representation of Images
- Features for Images
- Distances
- Summary
- A First Glimpse on Clustering
- References

- Similarity (as given by some distance measure) is a central concept in data mining, e.g.:
 - clustering: group similar objects in the same cluster, separate dissimilar objects to different clusters
 - outlier detection: identify objects that are dissimilar (by some characteristic) from most other objects
- definition of a suitable distance measure is often crucial for deriving a meaningful solution in the data mining task
 - images
 - CAD objects
 - proteins
 - texts

SDU Spaces and Distance Functions

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

Summary

A First Glimpse on Clustering

References

Common distance measure for (Euclidean) feature vectors: L_P -norm

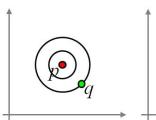
$$\operatorname{list}_{P}(p,q) = \left(|p_{1} - q_{1}|^{P} + |p_{2} - q_{2}|^{P} + \ldots + |p_{n} - q_{n}|^{P} \right)^{\frac{1}{P}}$$

Euclidean norm (L_2) :

(

Manhattan norm (L_1) :

Maximum norm $(L_{\infty}, \text{ also: } L_{\text{max}}, \text{ supremum dist.}, Chebyshev dist.})$



SDU Spaces and Distance Functions

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

Summary

A First Glimpse on Clustering

References

weighted Euclidean norm:

dist
$$(p,q) = (w_1|p_1 - q_1|^2 + w_2|p_2 - q_2|^2 + \ldots + w_n|p_n - q_n|^2)^{\frac{1}{2}}$$

1

* note that we assume vectors to be row vectors here

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances Summary

A First Glimpse on Clustering

References

Color Histograms as Feature Spaces for Representation of Images

Features for Images Distances Summary

V Your Choice of a Distance Measure

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

Features for Images

Distances

A First Glimpse on

Clustering References There are hundreds of distance functions [Deza and Deza, 2009].

- ▶ For time series: DTW, EDR, ERP, LCSS, ...
- For texts: Cosine and normalizations
- ▶ For sets based on intersection, union, ... (Jaccard)
- For clusters (single-link, average-link, etc.)
- For histograms: histogram intersection, "Earth movers distance", quadratic forms with color similarity
- With normalization: Canberra, ...
- Quadratic forms / bilinear forms: d(x, y) := x^TMy for some positive (usually symmetric) definite matrix M.

Note that:

Choosing the appropriate distance function can be seen as a part of "preprocessing".

Summary

DM573

Melih Kandemir

- Color Histograms as Feature Spaces for Representation of Images
- Features for Images
- Distances
- Summary
- A First Glimpse on Clustering
- References

You learned in this section:

- distances (L_p-norms, weighted, quadratic form)
- color histograms as feature (vector) descriptors for images
- impact of the granularity of color histograms on similarity measures

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization: Algorithmic

Differences

Summary

References

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering Partitional Clustering Algorithm Visualization: Algorithmic Differences Summary

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering Algorithm Visualization: Algorithmic Differences Summary

References

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering General Purpose of Clustering

Partitional Clustering Algorithm /isualization: Algorithmic Differences Summary

Purpose of Clustering

DM573

Melih Kandemir

- Color Histograms as Feature Spaces for Representation of Images
- A First Glimpse on Clustering
- General Purpose of Clustering
- Partitional Clustering Algorithm Visualization: Algorithmic Differences
- Summary
- References

- identify a finite number of categories (classes, groups: clusters) in a given dataset
- similar objects shall be grouped in the same cluster, dissimilar objects in different clusters
- "similarity" is highly subjective, depending on the application scenario

SDU A Dataset can be Clustered in Different Meaningful Ways

Melih Kandemir

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering Algorithm

Algonann

Visualization: Algorithmic

Differences

Summary

References

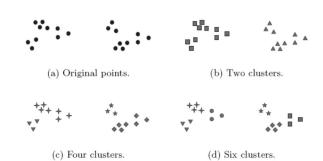


Figure 8.1. Different ways of clustering the same set of points.

(Figure from Tan et al. [2006].)

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm Visualization: Algorithmic Differences Summary

References

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm /isualization: Algorithmic Differences Summary

DU Criteria of Quality: Cohesion and Separation

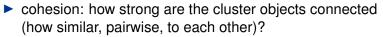
DM573

Melih Kandemir

- Color Histograms as Feature Spaces for Representation of Images
- A First Glimpse on Clustering
- General Purpose of Clustering

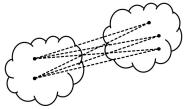
Partitional Clustering

- Algorithm Visualization: Algorithmic Differences
- Summary
- References



separation: how well is a cluster separated from other clusters?

small within cluster distances



large between cluster distances

Optimization of Cohesion

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm Visualization: Algorithmic Differences Summary

References

Partitional clustering algorithms partition a dataset into *k* clusters, typically minimizing some cost function (compactness criterion), i.e., optimizing cohesion.

Assumptions for Partitioning Clustering

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm Visualization: Algorithmic Differences Summary

References

Central assumptions for approaches in this family are typically:

- number k of clusters known (i.e., given as input)
- clusters are characterized by their compactness
- compactness measured by some distance function (e.g., distance of all objects in a cluster from some cluster representative is minimal)
- criterion of compactness typically leads to convex or even spherically shaped clusters

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization: Algorithmic Differences Summary

References

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering Partitional Clustering

Algorithm

/isualization: Algorithmic Differences Summary

SDU Construction of Central Points: Basics

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

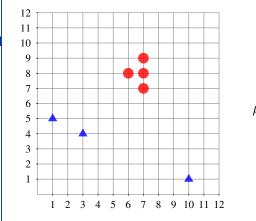
Partitional Clustering

Algorithm

Visualization: Algorithmic Differences

Summary

- ▶ objects are points x = (x₁,...,x_d) in Euclidean vector space ℝ^d, dist = Euclidean distance (L₂)
- centroid μ_C : mean vector of all points in cluster C



$$u_{C_i} = \frac{1}{|C_i|} \cdot \sum_{o \in C_i} o$$

SDU Construction of Central Points: Basics

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

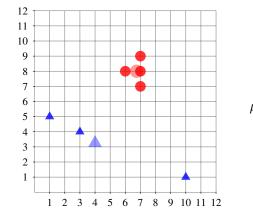
Partitional Clustering

Algorithm

Visualization: Algorithmic Differences

Summary

- ▶ objects are points x = (x₁,...,x_d) in Euclidean vector space ℝ^d, dist = Euclidean distance (L₂)
- centroid μ_C : mean vector of all points in cluster C



$$u_{C_i} = \frac{1}{|C_i|} \cdot \sum_{o \in C_i} o$$

SDII **Construction of Central Points: Basics**

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization: Algorithmic Differences

Summarv

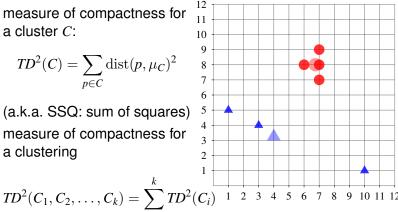
References

measure of compactness for a cluster C:

$$TD^2(C) = \sum_{p \in C} \operatorname{dist}(p, \mu_C)^2$$

(a.k.a. SSQ: sum of squares)

measure of compactness for a clustering



SDUA **Construction of Central Points: Basics**

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization: Algorithmic Differences

Summarv

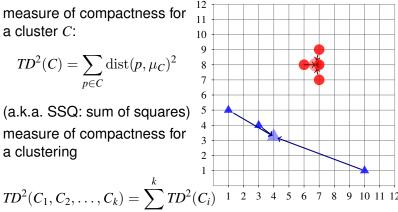
References

measure of compactness for a cluster C:

$$TD^2(C) = \sum_{p \in C} \operatorname{dist}(p, \mu_C)^2$$

(a.k.a. SSQ: sum of squares)

measure of compactness for a clustering



Basic Algorithm [Forgy, 1965, Lloyd, 1982]

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

- General Purpose of Clustering
- Partitional Clustering

Algorithm

- Visualization: Algorithmic Differences Summary
- References

Algorithm 2.1 (Clustering by Minimization of Variance)

- start with k (e.g., randomly selected) points as cluster representatives (or with a random partition into k "clusters")
- ▶ repeat:
 - assign each point to the closest representative
 - compute new representatives based on the given partitions (centroid of the assigned points)
- until there is no change in assignment



k-means

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization: Algorithmic Differences

Summary

References

k-means [MacQueen, 1967] is a variant of the basic algorithm:

- a centroid is immediately updated when some point changes its assignment
- k-means has very similar properties, but the result now depends on the order of data points in the input file

Note that:

The name "k-means" is often used indifferently for any variant of the basic algorithm, in particular also for Algorithm 2.1 [Forgy, 1965, Lloyd, 1982].

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization: Algorithmic Differences

Summary

References

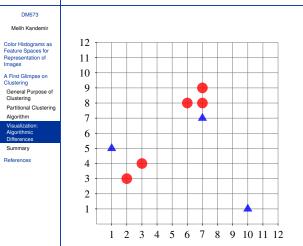
Color Histograms as Feature Spaces for Representation of Images

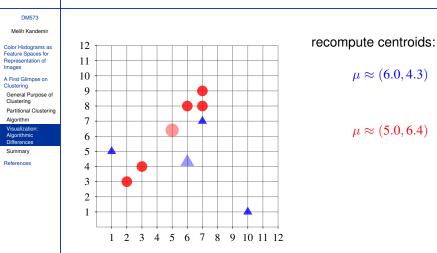
A First Glimpse on Clustering

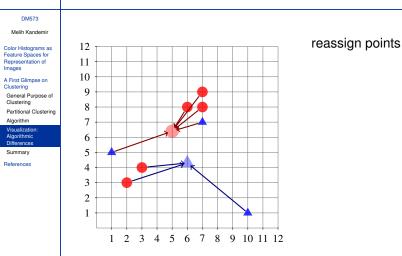
General Purpose of Clustering Partitional Clustering Algorithm

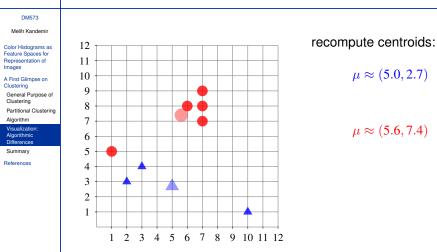
Visualization: Algorithmic Differences

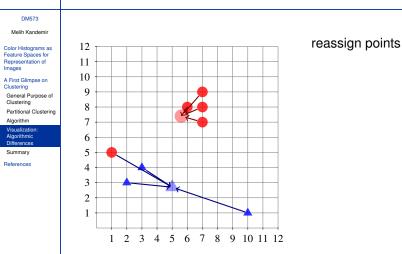
Summary

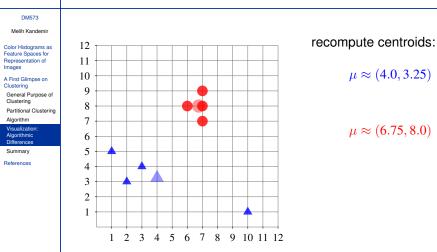






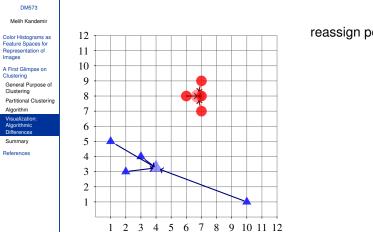






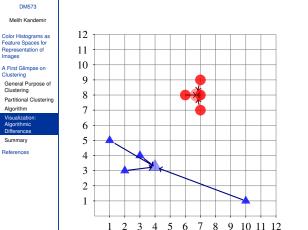
SDU 4 SYDDANSK UNIVERSITET

k-means Clustering – Lloyd/Forgy Algorithm



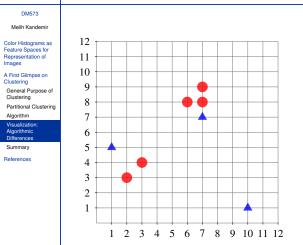
reassign points

k-means Clustering – Lloyd/Forgy Algorithm

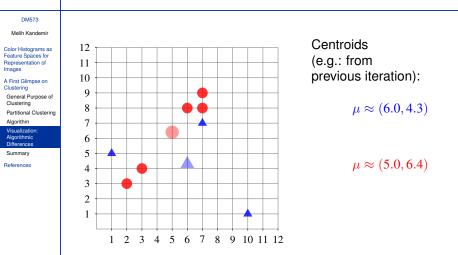


reassign points no change convergence!

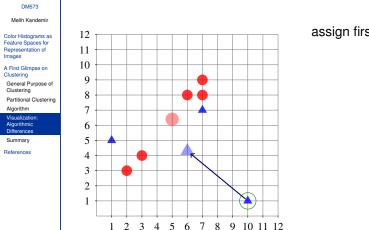
k-means Clustering – MacQueen Algorithm



k-means Clustering – MacQueen Algorithm

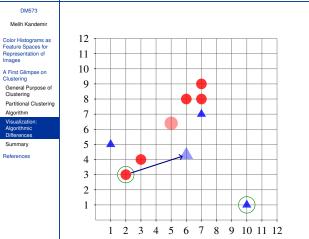


k-means Clustering – MacQueen Algorithm



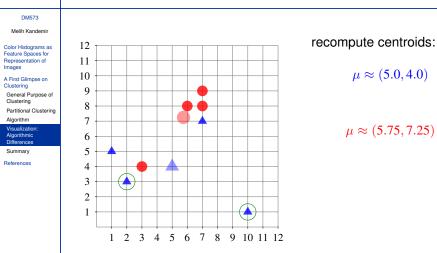
assign first point

k-means Clustering – MacQueen Algorithm

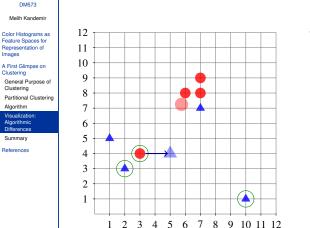


assign second point

k-means Clustering – MacQueen Algorithm

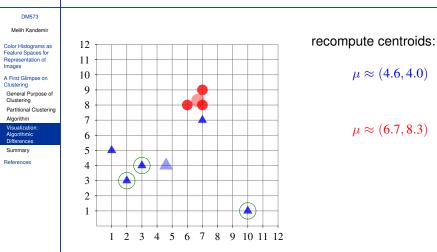


k-means Clustering – MacQueen Algorithm

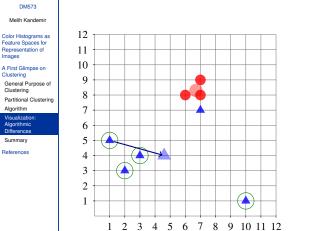


assign third point

k-means Clustering – MacQueen Algorithm

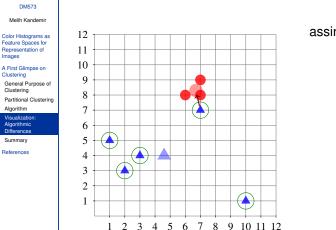


k-means Clustering – MacQueen Algorithm



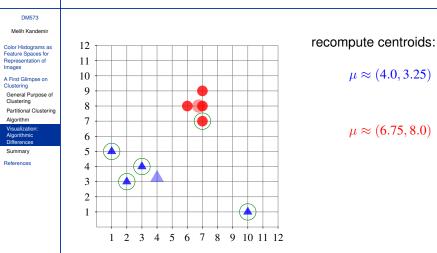
assign fourth point

k-means Clustering – MacQueen Algorithm

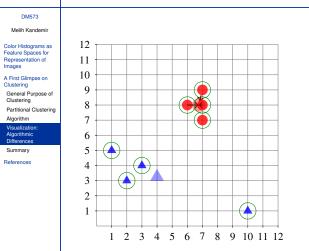


assing fifth point

k-means Clustering – MacQueen Algorithm

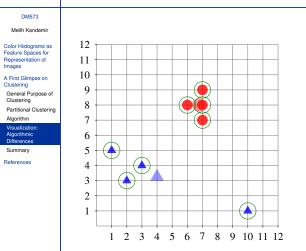


k-means Clustering – MacQueen Algorithm



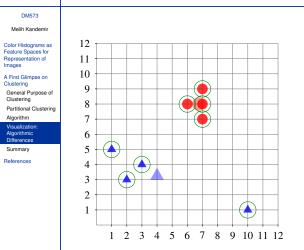
reassign more points

k-means Clustering – MacQueen Algorithm



reassign more points possibly more iterations

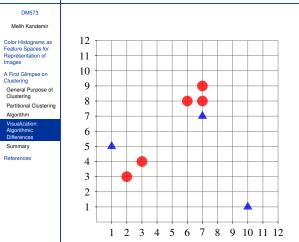
k-means Clustering – MacQueen Algorithm



reassign more points possibly more iterations convergence

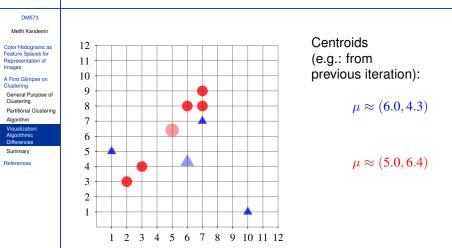
k-means Clustering – MacQueen Algorithm

Alternative Run – Different Order



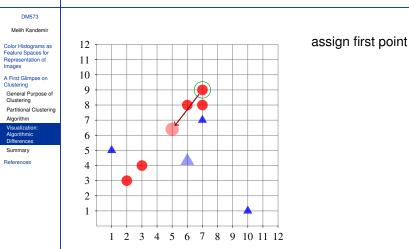
k-means Clustering – MacQueen Algorithm

Alternative Run – Different Order



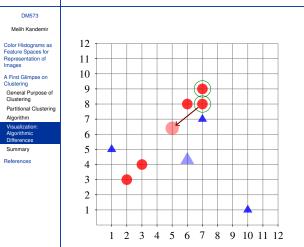
k-means Clustering – MacQueen Algorithm

Alternative Run – Different Order



k-means Clustering – MacQueen Algorithm

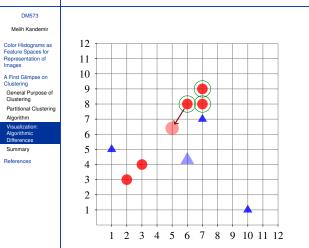
Alternative Run – Different Order



assign second point

k-means Clustering – MacQueen Algorithm

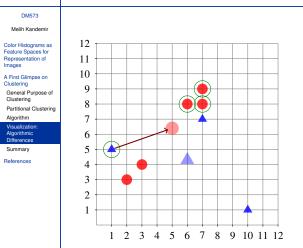
Alternative Run – Different Order



assign third point

k-means Clustering – MacQueen Algorithm

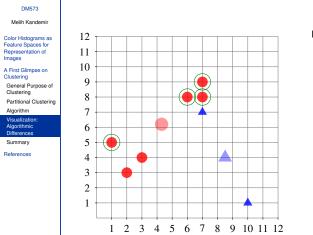
Alternative Run – Different Order



assign fourth point

k-means Clustering – MacQueen Algorithm

Alternative Run – Different Order



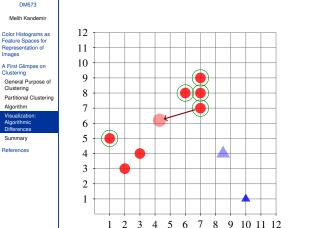
recompute centroids:

 $\mu\approx(4.0,8.5)$

 $\mu \approx (4.3, 6.2)$

k-means Clustering – MacQueen Algorithm

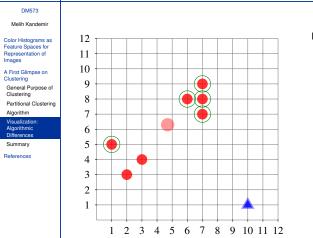
Alternative Run – Different Order



assign fifth point

k-means Clustering – MacQueen Algorithm

Alternative Run – Different Order



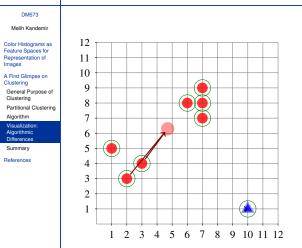
recompute centroids:

 $\mu\approx(10.0,1.0)$

 $\mu \approx (4.7, 6.3)$

k-means Clustering – MacQueen Algorithm

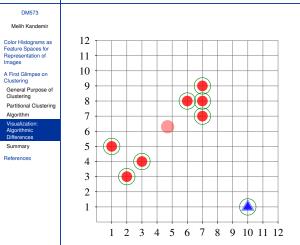
Alternative Run – Different Order



reasign more points

k-means Clustering – MacQueen Algorithm

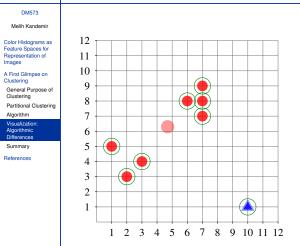
Alternative Run – Different Order



reasign more points possibly more iterations

k-means Clustering – MacQueen Algorithm

Alternative Run – Different Order



reasign more points possibly more iterations convergence

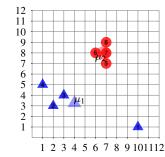
VDDANSK UNIVERSITE

k-means Clustering – Quality

DM573

Melih Kandemir

- Color Histograms as Feature Spaces for Representation of Images
- A First Glimpse on Clustering
- General Purpose of Clustering
- Partitional Clustering Algorithm
- Visualization: Algorithmic Differences
- Summarv
- References



First solution: $TD^2 = 61\frac{1}{2}$

 $SSQ(\mu_1, p_1) = |4 - 10|^2 + |3.25 - 1|^2 = 36 + 5\frac{1}{16} = 41\frac{1}{16}$ $SSQ(\mu_1, p_2) = |4 - 2|^2 + |3.25 - 3|^2 = 4 + \frac{1}{16} = 4\frac{1}{16}$ $SSQ(\mu_1, \mu_3) = |4-3|^2 + |3.25-4|^2 = 1 + \frac{9}{16} = 1\frac{9}{16}$ $SSQ(\mu_1, p_4) = |4 - 1|^2 + |3.25 - 5|^2 = 9 + 3\frac{1}{16} = 12\frac{1}{16}$ $TD^2(C_1) = 58\frac{3}{4}$

 $SSQ(\mu_2, p_5) = |6.75 - 7|^2 + |8 - 7|^2 = \frac{1}{16} + 1 = 1\frac{1}{16}$ $SSQ(\mu_2, p_6) = |6.75 - 6|^2 + |8 - 8|^2 = \frac{9}{16} + 0 = \frac{9}{16}$ $SSQ(\mu_2, p_7) = |6.75 - 7|^2 + |8 - 8|^2 = \frac{1}{16} + 0 = \frac{1}{16}$ $SSQ(\mu_2, p_8) = |6.75 - 7|^2 + |8 - 9|^2 = \frac{1}{16} + 1 = 1\frac{1}{16}$ $TD^2(C_2) = 2\frac{3}{4}$

Note:
$$SSQ(\mu, p) = Euclidean(\mu, p)^2 = L_2^2(\mu, p)$$
.

SDU ***** k-me

k-means Clustering – Quality

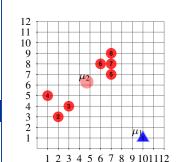
DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

- General Purpose of Clustering
- Partitional Clustering
- Algorithm Visualization:
- Algorithmic Differences
- Summary
- References



 $SSQ(\mu_1, p_1) = |10 - 10|^2 + |1 - 1|^2 = 0$ $TD^2(C_1) = 0$

$$\begin{split} & SSQ(\mu_2, p_2) \approx |4.7 - 2|^2 + |6.3 - 3|^2 \approx 18.2 \\ & SSQ(\mu_2, p_3) \approx |4.7 - 3|^2 + |6.3 - 4|^2 \approx 8.2 \\ & SSQ(\mu_2, p_4) \approx |4.7 - 1|^2 + |6.3 - 5|^2 \approx 15.4 \\ & SSQ(\mu_2, p_5) \approx |4.7 - 7|^2 + |6.3 - 7|^2 \approx 5.7 \\ & SSQ(\mu_2, p_6) \approx |4.7 - 7|^2 + |6.3 - 8|^2 \approx 4.6 \\ & SSQ(\mu_2, p_7) \approx |4.7 - 7|^2 + |6.3 - 8|^2 \approx 8.2 \\ & SSQ(\mu_2, p_7) \approx |4.7 - 7|^2 + |6.3 - 9|^2 \approx 12.6 \\ & TD^2(C_2) \approx 72.86 \end{split}$$

First solution: $TD^2 = 61\frac{1}{2}$ Second solution: $TD^2 \approx 72.68$

Note:
$$SSQ(\mu, p) = Euclidean(\mu, p)^2 = L_2^2(\mu, p).$$

SDU **SDU k-n**

k-means Clustering – Quality

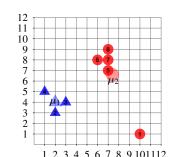
DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

- General Purpose of Clustering
- Partitional Clustering Algorithm
- Visualization: Algorithmic Differences
- Summary
- References



 $SSQ(\mu_1, p_2) = |2 - 2|^2 + |4 - 3|^2 = 0 + 1 = 1$ $SSQ(\mu_1, p_3) = |2 - 3|^2 + |4 - 4|^2 = 1 + 0 = 1$ $SSQ(\mu_1, p_4) = |2 - 1|^2 + |4 - 5|^2 = 1 + 1 = 2$ $TD^2(C_1) = 4$

$$\begin{split} & SSQ(\mu_2, p_1) = |7.4 - 10|^2 + |6.6 - 1|^2 = 6\frac{19}{25} + 31\frac{9}{25} = 38\frac{3}{25} \\ & SSQ(\mu_2, p_5) = |7.4 - 7|^2 + |6.6 - 7|^2 = \frac{4}{25} + \frac{4}{25} = \frac{8}{25} \\ & SSQ(\mu_2, p_6) = |7.4 - 6|^2 + |6.6 - 8|^2 = 1\frac{24}{25} + 1\frac{24}{25} = 3\frac{23}{25} \\ & SSQ(\mu_2, p_7) = |7.4 - 7|^2 + |6.6 - 8|^2 = \frac{4}{25} + 1\frac{24}{25} = 2\frac{3}{25} \\ & SSQ(\mu_2, p_8) = |7.4 - 7|^2 + |6.6 - 9|^2 = \frac{4}{25} + 5\frac{19}{25} = 5\frac{23}{25} \\ & TD^2(C_2) = 50\frac{2}{5} \end{split}$$

First solution: $TD^2 = 61\frac{1}{2}$ Second solution: $TD^2 \approx 72.68$ Optimal solution: $TD^2 = 54\frac{2}{5}$

Note:
$$SSQ(\mu, p) = Euclidean(\mu, p)^2 = L_2^2(\mu, p).$$

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization:

Algorithmic Differences

Summarv

References

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering Partitional Clustering Algorithm Visualization: Algorithmic Difference: Summary

Discussion

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

General Purpose of Clustering

Partitional Clustering

Algorithm

Visualization: Algorithmic

Differences

Summary

References

pros

- efficient: O(k · n) per iteration, number of iterations is usually in the order of 10.
- easy to implement, thus very popular

cons

- k-means converges towards a local minimum
- k-means (MacQueen-variant) is order-dependent
- deteriorates with noise and outliers (all points are used to compute centroids)
- clusters need to be convex and of (more or less) equal extension
- number k of clusters is hard to determine
- strong dependency on initial partition (in result quality as well as runtime)

Summary

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

- General Purpose of Clustering
- Partitional Clustering
- Algorithm
- Visualization:
- Algorithmic Differences

Summary

References

You learned in this section:

- What is Clustering?
- Basic idea for identifying "good" partitions into k clusters
- selection of representative points
- iterative refinement
- local optimum
- k-means variants [Forgy, 1965, Lloyd, 1982, MacQueen, 1967]

DM573

Melih Kandemir

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering

References

- M. M. Deza and E. Deza. *Encyclopedia of Distances*. Springer, 3rd edition, 2009. ISBN 9783662443415.
- E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. *Biometrics*, 21:768–769, 1965.
- S. P. Lloyd. Least squares quantization in PCM. *IEEE Transactions on Information Theory*, 28(2):129–136, 1982. doi: 10.1109/TIT.1982.1056489.
- J. MacQueen. Some methods for classification and analysis of multivariate observations. In *5th Berkeley Symposium on Mathematics, Statistics, and Probabilistics*, volume 1, pages 281–297, 1967.
- P.-N. Tan, M. Steinbach, and V. Kumar. *Introduction to Data Mining*. Addison Wesley, 2006.