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Cryptology

Cryptology = cryptography + cryptanalysis

Cryptography is necessary for security, but not sufficient
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Caesar cipher (With key = 3)

A B C D E F G H I J K L M N O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
D E F G H I J K L M N O P Q R
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P Q R S T U V W X Y Z Æ Ø Å
15 16 17 18 19 20 21 22 23 24 25 26 27 28
S T U V W X Y Z Æ Ø Å A B C
18 19 20 21 22 23 24 25 26 27 28 0 1 2

E (m) = m + 3 (mod 29)
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Symmetric key systems

Suppose the following was encrypted using a Caesar cipher and the
Danish alphabet. The key is unknown. What does it say?

ZQOØQOØ, RI.
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Symmetric key systems

Suppose the following was encrypted using a Caesar cipher and the
Danish alphabet. The key is unknown. What does it say?

ZQOØQOØ, RI.

What does this say about how many keys should be possible?
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Symmetric key systems

I Caesar Cipher
I

I

I Enigma
I DES
I Blowfish
I IDEA
I Triple DES
I AES
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Public key cryptography

Bob — 2 keys -PKB ,SKB

PKB — Bob’s public key
SKB — Bob’s private (secret) key

For Alice to send m to Bob,
Alice computes: c = E (m,PKB).

To decrypt c , Bob computes:
r = D(c, SKB).
r = m

It must be “hard” to compute m from (c ,PKB).
It must be “hard” to compute SKB from PKB .
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Introduction to Number Theory

Definition. Suppose a, b ∈ ZZ , a > 0.
Suppose ∃c ∈ ZZ s.t. b = ac . Then a divides b.
a | b.
a is a factor of b.
b is a multiple of a.
e 6 |f means e does not divide f .

Theorem. a, b, c ∈ ZZ . Then
1. if a|b and a|c , then a|(b + c)

2. if a|b, then a|bc ∀c ∈ ZZ

3. if a|b and b|c , then a|c .
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Definition. p ∈ ZZ , p > 1.
p is prime if 1 and p are the only positive integers which divide p.
2, 3, 5, 7, 11, 13, 17, ...
p is composite if it is not prime.
4, 6, 8, 9, 10, 12, 14, 15, 16, ...
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Theorem. a ∈ ZZ , d ∈ IN
∃ unique q, r , 0 ≤ r < d s.t. a = dq + r

d – divisor
a – dividend
q – quotient
r – remainder = a mod d

Definition. gcd(a, b) = greatest common divisor of a and b
= largest d ∈ ZZ s.t. d |a and d |b

If gcd(a, b) = 1, then a and b are relatively prime.
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Definition. a ≡ b (mod m) — a is congruent to b modulo m
if m | (a− b).

m | (a− b) ⇒ ∃k ∈ ZZ s.t. a = b + km.

Theorem. a ≡ b (mod m) c ≡ d (mod m)
Then a+ c ≡ b + d (mod m) and ac ≡ bd (mod m).

Proof.(of first) ∃k1, k2 s.t.
a = b + k1m c = d + k2m
a+ c = b + k1m + d + k2m

= b + d + (k1 + k2)m �
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Definition. a ≡ b (mod m) — a is congruent to b modulo m
if m | (a− b).

m | (a− b) ⇒ ∃k ∈ ZZ s.t. a = b + km.

Examples.
1. 15 ≡ 22 (mod 7)? 15 = 22 (mod 7)?
2. 15 ≡ 1 (mod 7)? 15 = 1 (mod 7)?
3. 15 ≡ 37 (mod 7)? 15 = 37 (mod 7)?
4. 58 ≡ 22 (mod 9)? 58 = 22 (mod 9)?
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RSA — a public key system

NA = pA · qA, where pA, qA prime.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

I PKA = (NA, eA)

I SKA = (NA, dA)

To encrypt: c = E (m,PKA) = meA (mod NA).
To decrypt: r = D(c ,SKA) = cdA (mod NA).
r = m.
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RSA — a public key system

NA = pA · qA, where pA, qA prime.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

I PKA = (NA, eA)

I SKA = (NA, dA)

To encrypt: c = E (m,PKA) = meA (mod NA).
To decrypt: r = D(c ,SKA) = cdA (mod NA).
r = m.

Example: p = 5, q = 11, e = 3, d = 27, m = 8.
Then N = 55. e · d = 81. So e · d ≡ 1 (mod 4 · 10).
To encrypt m: c = 83 (mod 55) = 17.
To decrypt c : r = 1727 (mod 55) = 8.
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Digital Signatures with RSA

Suppose Alice wants to sign a document m such that:
I No one else could forge her signature
I It is easy for others to verify her signature

Note m has arbitrary length.
RSA is used on fixed length messages.
Alice uses a cryptographically secure hash function h, such that:

I For any message m′, h(m′) has a fixed length (512 bits?)
I It is “hard” for anyone to find 2 messages (m1,m2) such that

h(m1) = h(m2).
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Digital Signatures with RSA
Then Alice “decrypts” h(m) with her secret RSA key (NA, dA)

s = (h(m))dA (mod NA)

Bob verifies her signature using her public RSA key (NA, eA) and h:

c = seA (mod NA)

He accepts if and only if

h(m) = c

.
This works because seA (mod NA) =

((h(m))dA)eA (mod NA) = ((h(m))eA)dA (mod NA) = h(m).

17 / 67



Combining symmetric and public key systems

Problem: Public key systems are slow!

Solution: Use symmetric key system for large message.
Encrypt only session key with public key system.

To encrypt a message m to send to Bob:
I Choose a random session key k for a symmetric key system

(AES?)
I Encrypt k with Bob’s public key — Result ke
I Encrypt m with k — Result me

I Send ke and me to Bob

How does Bob decrypt? Why is this efficient?
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Security of RSA

The primes pA and qA are kept secret with dA.

Suppose Eve can factor NA.

Then she can find pA and qA.
From them and eA, she finds dA.

Then she can decrypt just like Alice.

Factoring must be hard!
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Factoring

Theorem. N composite ⇒ N has a prime divisor ≤
√
N

Factor(N)

for i = 2 to
√
N do

check if i divides N
if it does then output (i ,N/i)

endfor
output -1 if divisor not found

Corollary There is an algorithm for factoring N (or testing
primality) which does O(

√
N) tests of divisibility.
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Factoring

Check all possible divisors between 2 and
√
N.

Not finished in your grandchildren’s life time for N with 3072 bits.

Problem The length of the input is n = dlog2(N + 1)e. So the
running time is O(2n/2) — exponential.

Open Problem Does there exist a polynomial time factoring
algorithm?

Use primes which are at least 1024 (or 1536) bits long.
So 21023 ≤ pA, qA < 21024.
So pA ≈ 10308.
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RSA

How do we implement RSA?

We need to find: pA, qA,NA, eA, dA.
We need to encrypt and decrypt.
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RSA — encryption/decryption

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) ≡ a · a (mod n) — 1 modular multiplication
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Modular Exponentiation

Theorem. For all nonnegative integers, b, c ,m,
b · c (mod m) = (b (mod m)) · (c (mod m)) (mod m).

Example: a · a2 (mod n) = (a (mod n))(a2 (mod n)) (mod n).

83 (mod 55) = 8 · 82 (mod 55)
= 8 · 64 (mod 55)
= 8 · (9+ 55) (mod 55)
= 72+ (8 · 55) (mod 55)
= 17+ 55+ (8 · 55) (mod 55)
= 17
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RSA — encryption/decryption

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) ≡ a · a (mod n) — 1 modular multiplication
a3 (mod n) ≡ a · (a · a (mod n)) (mod n) — 2 mod mults
Guess: k − 1 modular multiplications.

This is too many!
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).
pA and qA have ≥ 1024 bits each.
So at least one of eA and dA has ≥ 1024 bits.

To either encrypt or decrypt would need ≥ 21023 ≈ 10308

operations (more than number of atoms in the universe).
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RSA — encryption/decryption

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) ≡ a · a (mod n) — 1 modular multiplication
a3 (mod n) ≡ a · (a · a (mod n)) (mod n) — 2 mod mults
How do you calculate a4 (mod n) in less than 3?

a4 (mod n) ≡ (a2 (mod n))2 (mod n) — 2 mod mults
In general: a2s (mod n)?
a2s (mod n) ≡ (as (mod n))2 (mod n)
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RSA — encryption/decryption

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) ≡ a · a (mod n) — 1 modular multiplication
a3 (mod n) ≡ a · (a · a (mod n)) (mod n) — 2 mod mults
How do you calculate a4 (mod n) in less than 3?
a4 (mod n) ≡ (a2 (mod n))2 (mod n) — 2 mod mults
a2s (mod n) ≡ (as (mod n))2 (mod n)
In general: a2s+1 (mod n)?
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RSA — encryption/decryption

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) ≡ a · a (mod n) — 1 modular multiplication
a3 (mod n) ≡ a · (a · a (mod n)) (mod n) — 2 mod mults
How do you calculate a4 (mod n) in less than 3?
a4 (mod n) ≡ (a2 (mod n))2 (mod n) — 2 mod mults
a2s (mod n) ≡ (as (mod n))2 (mod n)
a2s+1 (mod n) ≡ a · ((as (mod n))2 (mod n)) (mod n)
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

To compute 36 (mod 7): Exp(3, 6, 7)
c ←Exp(3, 3, 7)
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

To compute 36 (mod 7): Exp(3, 6, 7)
c ←Exp(3, 3, 7)← 3·(Exp(3, 2, 7) (mod 7))
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

To compute 36 (mod 7): Exp(3, 6, 7)
c ←Exp(3, 3, 7)← 3·(Exp(3, 2, 7)) (mod 7))
c ′ ←Exp(3, 1, 7)
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

To compute 36 (mod 7): Exp(3, 6, 7)
c ←Exp(3, 3, 7)← 3·(Exp(3, 2, 7)) (mod 7))
c ′ ←Exp(3, 1, 7)← 3
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

To compute 36 (mod 7): Exp(3, 6, 7)
c ←Exp(3, 3, 7)← 3·(Exp(3, 2, 7)) (mod 7))
c ′ ←Exp(3, 1, 7)← 3
Exp(3, 2, 7) (mod 7))← 3 · 3 (mod 7)← 2
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

To compute 36 (mod 7): Exp(3, 6, 7)
c ←Exp(3, 3, 7)← 3·(Exp(3, 2, 7)) (mod 7))
c ′ ←Exp(3, 1, 7)← 3
Exp(3, 2, 7) (mod 7))← 3 · 3 (mod 7)← 2
c ← 3 · 2 (mod 7)← 6
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

To compute 36 (mod 7): Exp(3, 6, 7)
c ←Exp(3, 3, 7)← 3·(Exp(3, 2, 7)) (mod 7))
c ′ ←Exp(3, 1, 7)← 3
Exp(3, 2, 7) (mod 7))← 3 · 3 (mod 7)← 2
c ← 3 · 2 (mod 7)← 6
Exp(3, 6, 7)← (6 · 6) (mod 7)← 1
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

How many modular multiplications?
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

How many modular multiplications?

Divide exponent by 2 every other time.
How many times can we do that?
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Modular Exponentiation

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c ←Exp(a, k/2, n)
return((c · c) (mod n))

How many modular multiplications?

Divide exponent by 2 every other time.
How many times can we do that?

blog2(k)c
So at most 2blog2(k)c modular multiplications.
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RSA — a public key system

NA = pA · qA, where pA, qA prime.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

I PKA = (NA, eA)

I SKA = (NA, dA)

To encrypt: c = E (m,PKA) = meA (mod NA).
To decrypt: r = D(c ,SKA) = cdA (mod NA).
r = m.

Try using N = 35, e = 11 to create keys for RSA.
What is d? Try d = 11 and check it.
Encrypt 4. Decrypt the result.
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RSA — a public key system

NA = pA · qA, where pA, qA prime.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

I PKA = (NA, eA)

I SKA = (NA, dA)

To encrypt: c = E (m,PKA) = meA (mod NA).
To decrypt: r = D(c ,SKA) = cdA (mod NA).
r = m.

Try using N = 35, e = 11 to create keys for RSA.
What is d? Try d = 11 and check it.
Encrypt 4. Decrypt the result.
Did you get c = 9? And r = 4?
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RSA

NA = pA · qA, where pA, qA prime.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

I PKA = (NA, eA)

I SKA = (NA, dA)

To encrypt: c = E (m,PKA) = meA (mod NA).
To decrypt: r = D(c ,SKA) = cdA (mod NA).
r = m.
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Greatest Common Divisor

We need to find: eA, dA.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

Choose random eA.
Check that gcd(eA, (pA − 1)(qA − 1)) = 1.
Find dA such that eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).
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The Extended Euclidean Algorithm

Theorem. a, b ∈ IN. ∃ s, t ∈ ZZ s.t. sa+ tb = gcd(a, b).
Proof. Let d be the smallest positive integer in
D = {xa+ yb | x , y ∈ ZZ}.
d ∈ D ⇒ d = x ′a+ y ′b for some x ′, y ′ ∈ ZZ .
gcd(a, b)|a and gcd(a, b)|b, so gcd(a, b)|x ′a, gcd(a, b)|y ′b, and
gcd(a, b)|(x ′a+ y ′b) = d . We will show that d |gcd(a, b), so
d = gcd(a, b). Note a ∈ D.
Suppose a = dq + r with 0 ≤ r < d .

r = a− dq
= a− q(x ′a+ y ′b)
= (1− qx ′)a− (qy ′)b

⇒ r ∈ D
r < d ⇒ r = 0 ⇒ d |a.
Similarly, one can show that d |b.
Therefore, d |gcd(a, b). �
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The Extended Euclidean Algorithm

How do you find d , s and t?

Let d = gcd(a, b). Write b as b = aq + r with 0 ≤ r < a.
Then, d |b ⇒ d |(aq + r).
Also, d |a ⇒ d |(aq) ⇒ d |((aq + r)− aq) ⇒ d |r .

Let d ′ = gcd(a, b − aq).
Then, d ′|a ⇒ d ′|(aq)
Also, d ′|(b − aq) ⇒ d ′|((b − aq) + aq) ⇒ d ′|b.

Thus, gcd(a, b) = gcd(a, b (mod a))
= gcd(b (mod a), a). This shows how to reduce to a “simpler”
problem and gives us the Extended Euclidean Algorithm.
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The Extended Euclidean Algorithm
{ Initialize}

d0 ← b s0 ← 0 t0 ← 1
d1 ← a s1 ← 1 t1 ← 0
n← 1

{ Compute next d}
while dn > 0 do

begin
n← n + 1
{ Compute dn ← dn−2 (mod dn−1)}
qn ← bdn−2/dn−1c
dn ← dn−2 − qndn−1
sn ← sn−2 − qnsn−1
tn ← tn−2 − qntn−1

end
s ← sn−1 t ← tn−1
gcd(a, b)← dn−1
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The Extended Euclidean Algorithm

Finding multiplicative inverses modulo m:

Given a and m, find x s.t. a · x ≡ 1 (mod m).

Should also find a k, s.t. ax = 1+ km.
So solve for an s in an equation sa+ tm = 1.

This can be done if gcd(a,m) = 1.
Just use the Extended Euclidean Algorithm.

If the result, s, is negative, add m to s.
Now (s −m)a+ tm ≡ 1 (mod m).
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Examples

Calculate the following:
1. gcd(6, 9)
2. s and t such that s · 6+ t · 9 = gcd(6, 9)
3. gcd(15, 23)
4. s and t such that s · 15+ t · 23 = gcd(15, 23)
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RSA

NA = pA · qA, where pA, qA prime.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

I PKA = (NA, eA)

I SKA = (NA, dA)

To encrypt: c = E (m,PKA) = meA (mod NA).
To decrypt: r = D(c ,SKA) = cdA (mod NA).
r = m.
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Primality testing

We need to find: pA, qA — large primes.

Choose numbers at random and check if they are prime?
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Questions

1. How many random integers of length 1024 are prime?

Prime Number Theorem: About x
ln x numbers < x are prime, so

about 21024

709

So we expect to test about 709 before finding a prime with 1024
bits.

(This holds because the expected number of tries until a “success”,
when the probability of “success” is p, is 1/p.)
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2. How fast can we test if a number is prime?

Quite fast, using randomness.
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Method 1

Sieve of Eratosthenes:
Lists:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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3 5 7 9 11 13 15 17 19
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Sieve of Eratosthenes:
Lists:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
3 5 7 9 11 13 15 17 19

5 7 11 13 17 19
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Method 1

Sieve of Eratosthenes:
Lists:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
3 5 7 9 11 13 15 17 19

5 7 11 13 17 19
7 11 13 17 19

10308 — more than number of atoms in universe
So we cannot even write out this list!
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Method 2

CheckPrime(n)

for i = 2 to n − 1 do
check if i divides n
if it does then output i

endfor
output -1 if divisor not found

Check all possible divisors between 2 and n (or
√
n).

Our sun will die before we’re done!
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Rabin–Miller Primality Testing

In practice, use a randomized primality test.

Miller–Rabin primality test:
Starts with Fermat test:

214 (mod 15) ≡ 4 6= 1.
So 15 is not prime.

Fermat’s Little Theorem. Suppose p is a prime. Then for all
1 ≤ a ≤ p − 1, ap−1 (mod p) = 1.
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Rabin–Miller Primality Test
Fermat test:

Prime(n)

repeat r times
Choose random a ∈ {1, 2, . . . , n − 1}
if an−1 (mod n) 6≡ 1 then return(Composite)

end repeat
return(Probably Prime)

Carmichael Numbers Composite n.
For all a ∈ {1, 2, . . . , n − 1} s.t. gcd(a, n) = 1, an−1 (mod n) ≡ 1.
Example: 561 = 3 · 11 · 17

Theorem.
If p is prime,

√
1 (mod p) = {x | x2 (mod p) = 1} = {1, p − 1}.

If p has > 1 distinct factors, 1 has at least 4 square roots.

Example:
√
1 (mod 15) = {1, 4, 11, 14}
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Rabin–Miller Primality Test

Taking square roots of 1 (mod 561):

50560 (mod 561) ≡ 1
50280 (mod 561) ≡ 1
50140 (mod 561) ≡ 1
5070 (mod 561) ≡ 1
5035 (mod 561) ≡ 560

2560 (mod 561) ≡ 1
2280 (mod 561) ≡ 1
2140 (mod 561) ≡ 67

2 is a witness that 561 is composite.
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Rabin–Miller Primality Test

Miller–Rabin(n, r)

Calculate odd m such that n − 1 = 2s ·m
repeat r times

Choose random a ∈ {1, 2, . . . , n − 1}
if an−1 (mod n) 6≡ 1 then return(Composite)
if a(n−1)/2 (mod n) ≡ n − 1 then continue
if a(n−1)/2 (mod n) 6≡ 1 then return(Composite)
if a(n−1)/4 (mod n) ≡ n − 1 then continue
if a(n−1)/4 (mod n) 6≡ 1 then return(Composite)

....
if am (mod n) ≡ n − 1 then continue
if am (mod n) 6≡ 1 then return(Composite)

end repeat
return(Probably Prime)
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Rabin–Miller Primality Test

Theorem. If n is composite, at most 1/4 of the a’s with
1 ≤ a ≤ n − 1 will not end in “return(Composite)” during an
iteration of the repeat-loop.

This means that with r iterations, a composite n will survive to
“return(Probably Prime)” with probability at most (1/4)r . For e.g.
r = 100, this is less than (1/4)100 = 1/2200 < 1/1060.

A prime n will always survive to “return(Probably Prime)”.
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Conclusions about primality testing

1. Miller–Rabin is a practical primality test
2. There is a less practical deterministic primality test
3. Randomized algorithms are useful in practice
4. Algebra is used in primality testing
5. Number theory is not useless
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Why does RSA work?

Thm (The Chinese Remainder Theorem) Let n1, n2, ..., nk be
pairwise relatively prime. For any integers x1, x2, ..., xk , there exists
x ∈ ZZ s.t. x ≡ xi (mod ni ) for 1 ≤ i ≤ k , and this integer is
uniquely determined modulo the product N = n1n2...nk .

We consider the special case where n1 = p and n2 = q are two
primes (hence N = pq), and where x1 = x2 = m.

Clearly, m ≡ m (mod p) and m ≡ m (mod q) for any m. So if x
fulfills x ≡ m (mod p) and x ≡ m (mod q), then x ≡ m (mod N).

In particular, 0 ≤ x ,m ≤ N − 1, so we must have x = m.
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Fermat’s Little Theorem

Why does RSA work? CRT +

Fermat’s Little Theorem: p is a prime, p 6 |a.
Then ap−1 ≡ 1 (mod p) and ap ≡ a (mod p).
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RSA

NA = pA · qA, where pA, qA prime.
gcd(eA, (pA − 1)(qA − 1)) = 1.
eA · dA ≡ 1 (mod (pA − 1)(qA − 1)).

I PKA = (NA, eA)

I SKA = (NA, dA)

To encrypt: c = E (m,PKA) = meA (mod NA).
To decrypt: r = D(c ,SKA) = cdA (mod NA).
r = m.
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Correctness of RSA

Consider x = D(E (m,PKA),SKA).
Note ∃k s.t. eAdA = 1+ k(pA − 1)(qA − 1).
x ≡ (meA (mod NA))

dA (mod NA) ≡ meAdA ≡
m1+k(pA−1)(qA−1) (mod NA).

Consider x (mod pA).
x ≡ m1+k(pA−1)(qA−1) ≡ m · (m(pA−1))k(qA−1) ≡ m · 1k(qA−1) ≡
m (mod pA).

Consider x (mod qA).
x ≡ m1+k(pA−1)(qA−1) ≡ m · (m(qA−1))k(pA−1) ≡ m · 1k(pA−1) ≡
m (mod qA).

Apply the Chinese Remainder Theorem:
gcd(pA, qA) = 1, ⇒ x ≡ m (mod NA).
So D(E (m,PKA),SKA) = m.
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