Cryptography, Number Theory, and RSA

Joan Boyar, IMADA, University of Southern Denmark

December 2022

Outline

- Symmetric key cryptography
- Public key cryptography
- Introduction to number theory
- RSA
- Digital signatures with RSA
- Combining symmetric and public key systems
- Modular exponentiation
- Greatest common divisor
- Primality testing
- Correctness of RSA

Cryptology

 $\label{eq:cryptology} Cryptology = cryptography + cryptanalysis$

Cryptology

 ${\sf Cryptology} = {\sf cryptography} + {\sf cryptanalysis}$

Cryptography is necessary for security, but not sufficient

Caesar cipher (With key = 3)

A	В	С	D	Е	F	G	Н	I	J	K	L	Μ	Ν	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
D	Ε	F	G	Н	I	J	K	L	Μ	Ν	0	Р	Q	R
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	Æ	Ø	Å
15	16	17	18	19	20	21	22	23	24	25	26	27	28
S	Т	U	V	W	Х	Υ	Z	Æ	Ø	Å	Α	В	С
18	19	20	21	22	23	24	25	26	27	28	0	1	2

 $E(m) = m + 3 \pmod{29}$

Suppose the following was encrypted using a Caesar cipher and the Danish alphabet. The key is unknown. What does it say?

ZQOØQOØ, RI.

Suppose the following was encrypted using a Caesar cipher and the Danish alphabet. The key is unknown. What does it say?

ZQOØQOØ, RI.

What does this say about how many keys should be possible?

Symmetric key systems

Caesar Cipher

- Enigma
- DES
- Blowfish
- ► IDEA
- ► Triple DES
- ► AES

Public key cryptography

Bob — 2 keys - PK_B , SK_B

 PK_B — Bob's public key SK_B — Bob's private (secret) key

For Alice to send *m* to Bob, Alice computes: $c = E(m, PK_B)$.

To decrypt c, Bob computes: $r = D(c, SK_B)$. r = m Public key cryptography

Bob — 2 keys - PK_B , SK_B

 PK_B — Bob's public key SK_B — Bob's private (secret) key

For Alice to send *m* to Bob, Alice computes: $c = E(m, PK_B)$.

To decrypt c, Bob computes: $r = D(c, SK_B)$. r = m

It must be "hard" to compute *m* from (c, PK_B) .

Public key cryptography

Bob — 2 keys - PK_B , SK_B

 PK_B — Bob's public key SK_B — Bob's private (secret) key

For Alice to send *m* to Bob, Alice computes: $c = E(m, PK_B)$.

To decrypt c, Bob computes: $r = D(c, SK_B)$. r = m

It must be "hard" to compute m from (c, PK_B) . It must be "hard" to compute SK_B from PK_B .

Introduction to Number Theory

Definition. Suppose $a, b \in \mathbb{Z}$, a > 0. Suppose $\exists c \in \mathbb{Z}$ s.t. b = ac. Then a divides b. $a \mid b$. a is a factor of b. b is a multiple of a. $e \not| f$ means e does not divide f.

Theorem. $a, b, c \in \mathbb{Z}$. Then

- 1. if a|b and a|c, then a|(b+c)
- 2. if a|b, then $a|bc \forall c \in \mathbb{Z}$
- 3. if a|b and b|c, then a|c.

Definition. $p \in \mathbb{Z}$, p > 1. *p* is prime if 1 and *p* are the only positive integers which divide *p*. 2,3,5,7,11,13,17,... *p* is composite if it is not prime. 4,6,8,9,10,12,14,15,16,... **Theorem.** $a \in \mathbb{Z}$, $d \in \mathbb{N}$ \exists unique $q, r, 0 \leq r < d$ s.t. a = dq + r

> d - divisor a - dividend q - quotient $r - \text{remainder} = a \mod d$

Definition. gcd(a, b) = greatest common divisor of a and b = largest $d \in \mathbb{Z}$ s.t. d|a and d|b

If gcd(a, b) = 1, then a and b are relatively prime.

Definition. $a \equiv b \pmod{m} - a$ is congruent to b modulo m if $m \mid (a - b)$.

 $m \mid (a-b) \Rightarrow \exists k \in \mathbb{Z} \text{ s.t. } a = b + km.$

Theorem. $a \equiv b \pmod{m}$ $c \equiv d \pmod{m}$ Then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Proof.(of first)
$$\exists k_1, k_2$$
 s.t.
 $a = b + k_1m$ $c = d + k_2m$
 $a + c = b + k_1m + d + k_2m$
 $= b + d + (k_1 + k_2)m$

Definition. $a \equiv b \pmod{m} - a$ is congruent to b modulo m if $m \mid (a - b)$.

 $m \mid (a-b) \Rightarrow \exists k \in \mathbb{Z} \text{ s.t. } a = b + km.$

Examples.

1. $15 \equiv 22 \pmod{7}$? $15 = 22 \pmod{7}$?2. $15 \equiv 1 \pmod{7}$? $15 = 1 \pmod{7}$?3. $15 \equiv 37 \pmod{7}$? $15 = 37 \pmod{7}$?4. $58 \equiv 22 \pmod{9}$? $58 = 22 \pmod{9}$?

RSA — a public key system

$$N_A = p_A \cdot q_A, \text{ where } p_A, q_A \text{ prime.}$$

$$gcd(e_A, (p_A - 1)(q_A - 1)) = 1.$$

$$e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}.$$

$$\blacktriangleright PK_A = (N_A, e_A)$$

$$\blacktriangleright SK_A = (N_A, d_A)$$
To encrypt: $c = E(m, PK_A) = m^{e_A} \pmod{N_A}.$
To decrypt: $r = D(c, SK_A) = c^{d_A} \pmod{N_A}.$

$$r = m.$$

RSA — a public key system

$$N_{A} = p_{A} \cdot q_{A}, \text{ where } p_{A}, q_{A} \text{ prime.}$$

$$gcd(e_{A}, (p_{A} - 1)(q_{A} - 1)) = 1.$$

$$e_{A} \cdot d_{A} \equiv 1 \pmod{(p_{A} - 1)(q_{A} - 1)}.$$

$$\blacktriangleright PK_{A} = (N_{A}, e_{A})$$

$$\blacktriangleright SK_{A} = (N_{A}, d_{A})$$

To encrypt: $c = E(m, PK_A) = m^{e_A} \pmod{N_A}$. To decrypt: $r = D(c, SK_A) = c^{d_A} \pmod{N_A}$. r = m.

Example: p = 5, q = 11, e = 3, d = 27, m = 8. Then N = 55. $e \cdot d = 81$. So $e \cdot d \equiv 1 \pmod{4 \cdot 10}$. To encrypt m: $c = 8^3 \pmod{55} = 17$. To decrypt c: $r = 17^{27} \pmod{55} = 8$.

Digital Signatures with RSA

Suppose Alice wants to sign a document *m* such that:

- No one else could forge her signature
- It is easy for others to verify her signature

Note *m* has arbitrary length.

RSA is used on fixed length messages.

Alice uses a cryptographically secure hash function h, such that:

- For any message m', h(m') has a fixed length (512 bits?)
- ▶ It is "hard" for anyone to find 2 messages (m_1, m_2) such that $h(m_1) = h(m_2)$.

Digital Signatures with RSA

Then Alice "decrypts" h(m) with her secret RSA key (N_A, d_A)

 $s = (h(m))^{d_A} \pmod{N_A}$

Bob verifies her signature using her public RSA key (N_A, e_A) and h:

$$c = s^{e_A} \pmod{N_A}$$

He accepts if and only if

$$h(m) = c$$

This works because $s^{e_A} \pmod{N_A} =$

 $((h(m))^{d_A})^{e_A} \pmod{N_A} = ((h(m))^{e_A})^{d_A} \pmod{N_A} = h(m).$

Problem: Public key systems are slow!

Problem: Public key systems are slow!

Solution: Use symmetric key system for large message. Encrypt only session key with public key system.

Problem: Public key systems are slow!

Solution: Use symmetric key system for large message. Encrypt only session key with public key system.

To encrypt a message m to send to Bob:

- Choose a random session key k for a symmetric key system (AES?)
- Encrypt k with Bob's public key Result k_e
- Encrypt *m* with k Result m_e
- ▶ Send *k_e* and *m_e* to Bob

Problem: Public key systems are slow!

Solution: Use symmetric key system for large message. Encrypt only session key with public key system.

To encrypt a message m to send to Bob:

- Choose a random session key k for a symmetric key system (AES?)
- Encrypt k with Bob's public key Result k_e
- Encrypt *m* with k Result m_e
- Send k_e and m_e to Bob

How does Bob decrypt? Why is this efficient?

The primes p_A and q_A are kept secret with d_A .

Suppose Eve can factor N_A .

Then she can find p_A and q_A . From them and e_A , she finds d_A .

Then she can decrypt just like Alice.

Factoring must be hard!

Factoring

Theorem. N composite \Rightarrow N has a prime divisor $\leq \sqrt{N}$

```
Factor(N)

for i = 2 to \sqrt{N} do

check if i divides N

if it does then output (i, N/i)

endfor

output -1 if divisor not found
```

Corollary There is an algorithm for factoring *N* (or testing primality) which does $O(\sqrt{N})$ tests of divisibility.

Factoring

Check all possible divisors between 2 and \sqrt{N} . Not finished in your grandchildren's life time for N with 3072 bits.

Problem The length of the input is $n = \lceil \log_2(N+1) \rceil$. So the running time is $O(2^{n/2})$ — exponential.

Open Problem Does there exist a polynomial time factoring algorithm?

Use primes which are at least 1024 (or 1536) bits long. So $2^{1023} \leq p_A, q_A < 2^{1024}$. So $p_A \approx 10^{308}$.

How do we implement RSA?

We need to find: p_A , q_A , N_A , e_A , d_A . We need to encrypt and decrypt.

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^2 \pmod{n} \equiv a \cdot a \pmod{n} - 1$ modular multiplication

Modular Exponentiation

Theorem. For all nonnegative integers, b, c, m, $b \cdot c \pmod{m} = (b \pmod{m}) \cdot (c \pmod{m}) \pmod{m}$.

Example: $a \cdot a^2 \pmod{n} = (a \pmod{n})(a^2 \pmod{n}) \pmod{n}$.

$$8^{3} \pmod{55} = 8 \cdot 8^{2} \pmod{55}$$

= 8 \cdot 64 (mod 55)
= 8 \cdot (9 + 55) (mod 55)
= 72 + (8 \cdot 55) (mod 55)
= 17 + 55 + (8 \cdot 55) (mod 55)
= 17

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^2 \pmod{n} \equiv a \cdot a \pmod{n} - 1$ modular multiplication $a^3 \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2$ mod mults Guess: k - 1 modular multiplications.

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^2 \pmod{n} \equiv a \cdot a \pmod{n} - 1$ modular multiplication $a^3 \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2$ mod mults Guess: k - 1 modular multiplications.

This is too many! $e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}$. p_A and q_A have ≥ 1024 bits each. So at least one of e_A and d_A has ≥ 1024 bits.

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^2 \pmod{n} \equiv a \cdot a \pmod{n} - 1$ modular multiplication $a^3 \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2$ mod mults Guess: k - 1 modular multiplications.

This is too many! $e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}$. p_A and q_A have ≥ 1024 bits each. So at least one of e_A and d_A has ≥ 1024 bits.

To either encrypt or decrypt would need $\geq 2^{1023} \approx 10^{308}$ operations (more than number of atoms in the universe).

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^2 \pmod{n} \equiv a \cdot a \pmod{n} - 1 \mod{ar}$ multiplication $a^3 \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2 \mod{ar}$ How do you calculate $a^4 \pmod{n}$ in less than 3?

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^{2} \pmod{n} \equiv a \cdot a \pmod{n} - 1 \mod{\text{ultiplication}} \\ a^{3} \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2 \mod{\text{ults}} \\ \text{How do you calculate } a^{4} \pmod{n} \pmod{n} \pmod{n} - 2 \mod{\text{ults}} \\ a^{4} \pmod{n} \equiv (a^{2} \pmod{n})^{2} \pmod{n} - 2 \mod{\text{ults}} \\ \end{bmatrix}$

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^2 \pmod{n} \equiv a \cdot a \pmod{n} - 1 \mod{ar}$ multiplication $a^3 \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2 \mod{ar}$ mults How do you calculate $a^4 \pmod{n}$ in less than 3? $a^4 \pmod{n} \equiv (a^2 \pmod{n})^2 \pmod{n} - 2 \mod{ar}$ mults In general: $a^{2s} \pmod{n}$?

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $a^{2} \pmod{n} \equiv a \cdot a \pmod{n} - 1 \mod \text{ular multiplication}$ $a^{3} \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2 \mod \text{mults}$ How do you calculate $a^{4} \pmod{n}$ in less than 3? $a^{4} \pmod{n} \equiv (a^{2} \pmod{n})^{2} \pmod{n} - 2 \mod \text{mults}$ In general: $a^{2s} \pmod{n}$? $a^{2s} \pmod{n} \equiv (a^{s} \pmod{n})^{2} \pmod{n}$

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

$$a^{2} \pmod{n} \equiv a \cdot a \pmod{n} - 1 \mod \text{ular multiplication}$$

$$a^{3} \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2 \mod \text{mults}$$
How do you calculate $a^{4} \pmod{n}$ in less than 3?

$$a^{4} \pmod{n} \equiv (a^{2} \pmod{n})^{2} \pmod{n} - 2 \mod \text{mults}$$

$$a^{2s} \pmod{n} \equiv (a^{s} \pmod{n})^{2} \pmod{n}$$
In general: $a^{2s+1} \pmod{n}$?

We need to encrypt and decrypt: compute $a^k \pmod{n}$.

 $\begin{array}{l} a^{2} \pmod{n} \equiv a \cdot a \pmod{n} - 1 \mod{\text{ultrain}} \\ a^{3} \pmod{n} \equiv a \cdot (a \cdot a \pmod{n}) \pmod{n} - 2 \mod{\text{mults}} \\ \text{How do you calculate } a^{4} \pmod{n} \pmod{n} \pmod{n} - 2 \mod{\text{mults}} \\ \text{How do you calculate } a^{4} \pmod{n} \pmod{n} = (a^{2} \pmod{n})^{2} \pmod{n} - 2 \mod{\text{mults}} \\ a^{4} \pmod{n} \equiv (a^{2} \pmod{n})^{2} \pmod{n} - 2 \mod{\text{mults}} \\ a^{2s} \pmod{n} \equiv (a^{s} \pmod{n})^{2} \pmod{n} \\ a^{2s+1} \pmod{n} \equiv a \cdot ((a^{s} \pmod{n})^{2} \pmod{n}) \pmod{n} \end{array}$

 $\mathsf{Exp}(a, k, n) \qquad \{ \text{ Compute } a^k \pmod{n} \}$

if k < 0 then report error if k = 0 then return(1) if k = 1 then return($a \pmod{n}$) if k is odd then return($a \cdot \text{Exp}(a, k - 1, n) \pmod{n}$) if k is even then $c \leftarrow \text{Exp}(a, k/2, n)$ return(($c \cdot c$) (mod n))

 $\begin{aligned} & \mathsf{Exp}(a, k, n) \quad \{ \text{ Compute } a^k \pmod{n} \} \\ & \text{if } k < 0 \text{ then report error} \\ & \text{if } k = 0 \text{ then return}(1) \\ & \text{if } k = 1 \text{ then return}(a \pmod{n})) \\ & \text{if } k \text{ is odd then return}(a \cdot \mathsf{Exp}(a, k - 1, n) \pmod{n})) \\ & \text{if } k \text{ is even then} \\ & c \leftarrow \mathsf{Exp}(a, k/2, n) \\ & \text{return}((c \cdot c) \pmod{n})) \end{aligned}$

To compute $3^6 \pmod{7}$: Exp(3, 6, 7) $c \leftarrow \text{Exp}(3, 3, 7)$

 $\begin{aligned} & \mathsf{Exp}(a, k, n) \quad \{ \text{ Compute } a^k \pmod{n} \} \\ & \text{if } k < 0 \text{ then report error} \\ & \text{if } k = 0 \text{ then return}(1) \\ & \text{if } k = 1 \text{ then return}(a \pmod{n}) \\ & \text{if } k \text{ is odd then return}(a \cdot \mathsf{Exp}(a, k - 1, n) \pmod{n}) \\ & \text{if } k \text{ is even then} \\ & c \leftarrow \mathsf{Exp}(a, k/2, n) \\ & \text{return}((c \cdot c) \pmod{n}) \end{aligned}$

To compute $3^6 \pmod{7}$: Exp(3,6,7) $c \leftarrow Exp(3,3,7) \leftarrow 3 \cdot (Exp(3,2,7) \pmod{7})$

 $\begin{aligned} & \mathsf{Exp}(a, k, n) \quad \{ \text{ Compute } a^k \pmod{n} \} \\ & \text{if } k < 0 \text{ then report error} \\ & \text{if } k = 0 \text{ then return}(1) \\ & \text{if } k = 1 \text{ then return}(a \pmod{n})) \\ & \text{if } k \text{ is odd then return}(a \cdot \mathsf{Exp}(a, k - 1, n) \pmod{n})) \\ & \text{if } k \text{ is even then} \\ & c \leftarrow \mathsf{Exp}(a, k/2, n) \\ & \text{return}((c \cdot c) \pmod{n})) \end{aligned}$

To compute $3^6 \pmod{7}$: Exp(3,6,7) $c \leftarrow Exp(3,3,7) \leftarrow 3 \cdot (Exp(3,2,7)) \pmod{7}$ $c' \leftarrow Exp(3,1,7)$

 $\begin{aligned} & \mathsf{Exp}(a, k, n) \quad \{ \text{ Compute } a^k \pmod{n} \} \\ & \text{if } k < 0 \text{ then report error} \\ & \text{if } k = 0 \text{ then return}(1) \\ & \text{if } k = 1 \text{ then return}(a \pmod{n})) \\ & \text{if } k \text{ is odd then return}(a \cdot \mathsf{Exp}(a, k - 1, n) \pmod{n})) \\ & \text{if } k \text{ is even then} \\ & c \leftarrow \mathsf{Exp}(a, k/2, n) \\ & \text{return}((c \cdot c) \pmod{n})) \end{aligned}$

To compute $3^6 \pmod{7}$: Exp(3,6,7) $c \leftarrow Exp(3,3,7) \leftarrow 3 \cdot (Exp(3,2,7)) \pmod{7}$ $c' \leftarrow Exp(3,1,7) \leftarrow 3$

Exp(a, k, n) { Compute $a^k \pmod{n}$ } if k < 0 then report error if k = 0 then return(1) if k = 1 then return(a (mod n)) if k is odd then return $(a \cdot \mathsf{Exp}(a, k-1, n) \pmod{n})$ if k is even then $c \leftarrow \mathsf{Exp}(a, k/2, n)$ $return((c \cdot c) \pmod{n})$ To compute $3^6 \pmod{7}$: Exp(3, 6, 7)

 $c \leftarrow \mathsf{Exp}(3,3,7) \leftarrow 3 \cdot (\mathsf{Exp}(3,2,7)) \pmod{7}$ $c' \leftarrow \mathsf{Exp}(3,1,7) \leftarrow 3$ $\mathsf{Exp}(3,2,7) \pmod{7} \leftarrow 3 \cdot 3 \pmod{7} \leftarrow 2$

Exp(a, k, n) { Compute $a^k \pmod{n}$ } if k < 0 then report error if k = 0 then return(1) if k = 1 then return(a (mod n)) if k is odd then return $(a \cdot \mathsf{Exp}(a, k-1, n) \pmod{n})$ if k is even then $c \leftarrow \mathsf{Exp}(a, k/2, n)$ $return((c \cdot c) \pmod{n})$ To compute $3^6 \pmod{7}$: Exp(3, 6, 7) $c \leftarrow \mathsf{Exp}(3,3,7) \leftarrow 3 \cdot (\mathsf{Exp}(3,2,7)) \pmod{7}$ $c' \leftarrow \mathsf{Fxp}(3\ 1\ 7) \leftarrow 3$

$$\begin{array}{l} \mathsf{Exp}(3,2,7) \pmod{7} \leftarrow 3 \cdot 3 \pmod{7} \leftarrow 2 \\ c \leftarrow 3 \cdot 2 \pmod{7} \leftarrow 6 \end{array}$$

Exp(a, k, n) { Compute $a^k \pmod{n}$ } if k < 0 then report error if k = 0 then return(1) if k = 1 then return(a (mod n)) if k is odd then return $(a \cdot \mathsf{Exp}(a, k-1, n) \pmod{n})$ if k is even then $c \leftarrow \mathsf{Exp}(a, k/2, n)$ $return((c \cdot c) \pmod{n})$ T_{2} compute 26 (mod 7), $E_{10}(2.6.7)$

$$c \leftarrow \mathsf{Exp}(3,3,7) \leftarrow 3 \cdot (\mathsf{Exp}(3,2,7)) \pmod{7}$$

$$c' \leftarrow \mathsf{Exp}(3,1,7) \leftarrow 3$$

$$\mathsf{Exp}(3,2,7) \pmod{7} \leftarrow 3 \cdot 3 \pmod{7} \leftarrow 2$$

$$c \leftarrow 3 \cdot 2 \pmod{7} \leftarrow 6$$

$$\mathsf{Exp}(3,6,7) \leftarrow (6 \cdot 6) \pmod{7} \leftarrow 1$$

 $\mathsf{Exp}(a, k, n) \qquad \{ \text{ Compute } a^k \pmod{n} \}$

if k < 0 then report error if k = 0 then return(1) if k = 1 then return($a \pmod{n}$)) if k is odd then return($a \cdot \text{Exp}(a, k - 1, n) \pmod{n}$)) if k is even then $c \leftarrow \text{Exp}(a, k/2, n)$ return(($c \cdot c$) (mod n))

How many modular multiplications?

 $\begin{aligned} & \mathsf{Exp}(a,k,n) \quad \{ \text{ Compute } a^k \pmod{n} \} \\ & \text{if } k < 0 \text{ then report error} \\ & \text{if } k = 0 \text{ then return}(1) \\ & \text{if } k = 1 \text{ then return}(a \pmod{n})) \\ & \text{if } k \text{ is odd then return}(a \cdot \mathsf{Exp}(a,k-1,n) \pmod{n})) \\ & \text{if } k \text{ is even then} \\ & c \leftarrow \mathsf{Exp}(a,k/2,n) \\ & \text{return}((c \cdot c) \pmod{n})) \end{aligned}$

How many modular multiplications?

Divide exponent by 2 every other time. How many times can we do that?

 $\begin{aligned} & \mathsf{Exp}(a, k, n) \quad \{ \text{ Compute } a^k \pmod{n} \} \\ & \text{if } k < 0 \text{ then report error} \\ & \text{if } k = 0 \text{ then return}(1) \\ & \text{if } k = 1 \text{ then return}(a \pmod{n})) \\ & \text{if } k \text{ is odd then return}(a \cdot \mathsf{Exp}(a, k - 1, n) \pmod{n})) \\ & \text{if } k \text{ is even then} \\ & c \leftarrow \mathsf{Exp}(a, k/2, n) \\ & \text{return}((c \cdot c) \pmod{n})) \end{aligned}$

How many modular multiplications?

Divide exponent by 2 every other time. How many times can we do that?

 $\lfloor \log_2(k) \rfloor$ So at most $2\lfloor \log_2(k) \rfloor$ modular multiplications.

RSA — a public key system

$$N_A = p_A \cdot q_A, \text{ where } p_A, q_A \text{ prime.}$$

$$gcd(e_A, (p_A - 1)(q_A - 1)) = 1.$$

$$e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}.$$

$$PK_A = (N_A, e_A)$$

$$SK_A = (N_A, d_A)$$

To encrypt: $c = E(m, PK_A) = m^{e_A} \pmod{N_A}$. To decrypt: $r = D(c, SK_A) = c^{d_A} \pmod{N_A}$. r = m.

Try using N = 35, e = 11 to create keys for RSA. What is d? Try d = 11 and check it. Encrypt 4. Decrypt the result.

RSA — a public key system

$$N_{A} = p_{A} \cdot q_{A}, \text{ where } p_{A}, q_{A} \text{ prime.}$$

$$gcd(e_{A}, (p_{A} - 1)(q_{A} - 1)) = 1.$$

$$e_{A} \cdot d_{A} \equiv 1 \pmod{(p_{A} - 1)(q_{A} - 1)}.$$

$$\blacktriangleright PK_{A} = (N_{A}, e_{A})$$

$$\blacktriangleright SK_{A} = (N_{A}, d_{A})$$

To encrypt: $c = E(m, PK_A) = m^{e_A} \pmod{N_A}$. To decrypt: $r = D(c, SK_A) = c^{d_A} \pmod{N_A}$. r = m.

Try using N = 35, e = 11 to create keys for RSA. What is d? Try d = 11 and check it. Encrypt 4. Decrypt the result. Did you get c = 9? And r = 4?

RSA

$$\begin{split} &N_A = p_A \cdot q_A, \text{ where } p_A, q_A \text{ prime.} \\ &gcd(e_A, (p_A - 1)(q_A - 1)) = 1. \\ &e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}. \\ &\blacktriangleright PK_A = (N_A, e_A) \\ &\blacktriangleright SK_A = (N_A, d_A) \\ &\text{To encrypt: } c = E(m, PK_A) = m^{e_A} \pmod{N_A}. \\ &\text{To decrypt: } r = D(c, SK_A) = c^{d_A} \pmod{N_A}. \end{split}$$

r = m.

Greatest Common Divisor

We need to find:
$$e_A, d_A$$
.
 $gcd(e_A, (p_A - 1)(q_A - 1)) = 1$.
 $e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}$.

Greatest Common Divisor

We need to find:
$$e_A, d_A$$
.
 $gcd(e_A, (p_A - 1)(q_A - 1)) = 1$.
 $e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}$.

Choose random e_A . Check that $gcd(e_A, (p_A - 1)(q_A - 1)) = 1$. Find d_A such that $e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}$.

Theorem. $a, b \in \mathbb{N}$. $\exists s, t \in \mathbb{Z}$ s.t. sa + tb = gcd(a, b). **Proof.** Let d be the smallest positive integer in $D = \{xa + yb \mid x, y \in \mathbb{Z}\}.$ $d \in D \Rightarrow d = x'a + v'b$ for some $x', v' \in \mathbb{Z}$. gcd(a, b)|a and gcd(a, b)|b, so gcd(a, b)|x'a, gcd(a, b)|y'b, and gcd(a, b)|(x'a + y'b) = d. We will show that d|gcd(a, b), so d = gcd(a, b). Note $a \in D$. Suppose a = dq + r with $0 \le r < d$. r = a - da= a - q(x'a + y'b)= (1 - qx')a - (qy')b \Rightarrow $r \in D$ $r < d \Rightarrow r = 0 \Rightarrow d|a$. Similarly, one can show that d|b. Therefore, d|gcd(a, b).

How do you find d, s and t?

Let
$$d = gcd(a, b)$$
. Write b as $b = aq + r$ with $0 \le r < a$.
Then, $d|b \Rightarrow d|(aq + r)$.
Also, $d|a \Rightarrow d|(aq) \Rightarrow d|((aq + r) - aq) \Rightarrow d|r$.

Let
$$d' = gcd(a, b - aq)$$
.
Then, $d'|a \Rightarrow d'|(aq)$
Also, $d'|(b - aq) \Rightarrow d'|((b - aq) + aq) \Rightarrow d'|b$.

Thus, $gcd(a, b) = gcd(a, b \pmod{a})$ = $gcd(b \pmod{a}, a)$. This shows how to reduce to a "simpler" problem and gives us the Extended Euclidean Algorithm.

 $gcd(a, b) \leftarrow d_{n-1}$

{ Initialize} $d_0 \leftarrow b$ $s_0 \leftarrow 0$ $t_0 \leftarrow 1$ $d_1 \leftarrow a \quad s_1 \leftarrow 1 \quad t_1 \leftarrow 0$ $n \leftarrow 1$ { Compute next *d*} while $d_n > 0$ do begin $n \leftarrow n + 1$ { Compute $d_n \leftarrow d_{n-2} \pmod{d_{n-1}}$ $q_n \leftarrow |d_{n-2}/d_{n-1}|$ $d_n \leftarrow d_{n-2} - q_n d_{n-1}$ $s_n \leftarrow s_{n-2} - q_n s_{n-1}$ $t_n \leftarrow t_{n-2} - q_n t_{n-1}$ end $t \leftarrow t_{n-1}$ $s \leftarrow s_{n-1}$

Finding multiplicative inverses modulo m:

Given a and m, find x s.t. $a \cdot x \equiv 1 \pmod{m}$.

Should also find a k, s.t. ax = 1 + km. So solve for an s in an equation sa + tm = 1.

This can be done if gcd(a, m) = 1. Just use the Extended Euclidean Algorithm.

If the result, s, is negative, add m to s. Now $(s - m)a + tm \equiv 1 \pmod{m}$.

Examples

Calculate the following:

- 1. gcd(6,9)
- 2. s and t such that $s \cdot 6 + t \cdot 9 = gcd(6,9)$
- 3. gcd(15,23)
- 4. s and t such that $s \cdot 15 + t \cdot 23 = gcd(15, 23)$

RSA

$$\begin{split} &N_A = p_A \cdot q_A, \text{ where } p_A, q_A \text{ prime.} \\ &gcd(e_A, (p_A - 1)(q_A - 1)) = 1. \\ &e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}. \\ &\blacktriangleright PK_A = (N_A, e_A) \\ &\blacktriangleright SK_A = (N_A, d_A) \\ &\text{To encrypt: } c = E(m, PK_A) = m^{e_A} \pmod{N_A}. \\ &\text{To decrypt: } r = D(c, SK_A) = c^{d_A} \pmod{N_A}. \end{split}$$

r = m.

Primality testing

We need to find: p_A, q_A — large primes.

Choose numbers at random and check if they are prime?

1. How many random integers of length 1024 are prime?

Questions

1. How many random integers of length 1024 are prime?

Prime Number Theorem: About $\frac{x}{\ln x}$ numbers < x are prime, so about $\frac{2^{1024}}{709}$

So we expect to test about 709 before finding a prime with 1024 bits.

(This holds because the expected number of tries until a "success", when the probability of "success" is p, is 1/p.)

Questions

1. How many random integers of length 1024 are prime?

About $\frac{x}{\ln x}$ numbers < x are prime, so about $\frac{2^{1024}}{709}$

So we expect to test about 709 before finding a prime.

2. How fast can we test if a number is prime?

Questions

1. How many random integers of length 1024 are prime?

About $\frac{x}{\ln x}$ numbers < x are prime, so about $\frac{2^{1024}}{709}$

So we expect to test about 709 before finding a prime.

2. How fast can we test if a number is prime?

Quite fast, using randomness.

Sieve of Eratosthenes: Lists:

Sieve of Eratosthenes: Lists:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 3 5 7 9 11 13 15 17 19

Sieve of Eratosthenes: Lists:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	3		5		7		9		11		13		15		17		19
			5		7				11		13				17		19

Sieve of Eratosthenes: Lists:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	3		5		7		9		11		13		15		17		19
			5		7				11		13				17		19
					7				11		13				17		19

 10^{308} — more than number of atoms in universe So we cannot even write out this list!

```
CheckPrime(n)

for i = 2 to n - 1 do

check if i divides n

if it does then output i

endfor

output -1 if divisor not found
```

Check all possible divisors between 2 and *n* (or \sqrt{n}). Our sun will die before we're done!

Rabin-Miller Primality Testing

In practice, use a randomized primality test.

Miller-Rabin primality test: Starts with Fermat test:

> $2^{14} \pmod{15} \equiv 4 \neq 1.$ So 15 is not prime.

Fermat's Little Theorem. Suppose p is a prime. Then for all $1 \le a \le p-1$, $a^{p-1} \pmod{p} = 1$.

Rabin-Miller Primality Test

```
Fermat test:

Prime(n)

repeat r times

Choose random a \in \{1, 2, ..., n-1\}

if a^{n-1} \pmod{n} \not\equiv 1 then return(Composite)

end repeat

return(Probably Prime)
```

Carmichael Numbers Composite *n*. For all $a \in \{1, 2, ..., n-1\}$ s.t. gcd(a, n) = 1, $a^{n-1} \pmod{n} \equiv 1$. Example: $561 = 3 \cdot 11 \cdot 17$

Theorem.

If p is prime, $\sqrt{1} \pmod{p} = \{x \mid x^2 \pmod{p} = 1\} = \{1, p - 1\}$. If p has > 1 distinct factors, 1 has at least 4 square roots.

Example: $\sqrt{1} \pmod{15} = \{1, 4, 11, 14\}$

Rabin-Miller Primality Test

Taking square roots of 1 (mod 561):

```
\begin{array}{l} 50^{560} \pmod{561} \equiv 1\\ 50^{280} \pmod{561} \equiv 1\\ 50^{140} \pmod{561} \equiv 1\\ 50^{70} \pmod{561} \equiv 1\\ 50^{35} \pmod{561} \equiv 1\\ 2^{560} \pmod{561} \equiv 1\\ 2^{280} \pmod{561} \equiv 1\\ 2^{140} \pmod{561} \equiv 6\end{array}
```

2 is a witness that 561 is composite.

Rabin-Miller Primality Test

 $\mathsf{Miller}-\mathsf{Rabin}(n,r)$

Calculate odd m such that $n - 1 = 2^s \cdot m$ repeat r times

Choose random $a \in \{1, 2, ..., n-1\}$ if $a^{n-1} \pmod{n} \not\equiv 1$ then return(Composite) if $a^{(n-1)/2} \pmod{n} \equiv n-1$ then continue if $a^{(n-1)/2} \pmod{n} \not\equiv 1$ then return(Composite) if $a^{(n-1)/4} \pmod{n} \equiv n-1$ then continue if $a^{(n-1)/4} \pmod{n} \not\equiv 1$ then return(Composite)

if $a^m \pmod{n} \equiv n-1$ then continue if $a^m \pmod{n} \not\equiv 1$ then return(Composite) end repeat return(Probably Prime) **Theorem.** If *n* is composite, at most 1/4 of the *a*'s with $1 \le a \le n-1$ will not end in "return(Composite)" during an iteration of the **repeat**-loop.

This means that with r iterations, a composite n will survive to "return(Probably Prime)" with probability at most $(1/4)^r$. For e.g. r = 100, this is less than $(1/4)^{100} = 1/2^{200} < 1/10^{60}$.

A prime *n* will always survive to "return(Probably Prime)".

Conclusions about primality testing

- 1. Miller-Rabin is a practical primality test
- 2. There is a less practical deterministic primality test
- 3. Randomized algorithms are useful in practice
- 4. Algebra is used in primality testing
- 5. Number theory is not useless

Why does RSA work?

Thm (The Chinese Remainder Theorem) Let $n_1, n_2, ..., n_k$ be pairwise relatively prime. For any integers $x_1, x_2, ..., x_k$, there exists $x \in \mathbb{Z}$ s.t. $x \equiv x_i \pmod{n_i}$ for $1 \le i \le k$, and this integer is uniquely determined modulo the product $N = n_1 n_2 ... n_k$.

We consider the special case where $n_1 = p$ and $n_2 = q$ are two primes (hence N = pq), and where $x_1 = x_2 = m$.

Clearly, $m \equiv m \pmod{p}$ and $m \equiv m \pmod{q}$ for any m. So if x fulfills $x \equiv m \pmod{p}$ and $x \equiv m \pmod{q}$, then $x \equiv m \pmod{N}$.

In particular, $0 \le x, m \le N - 1$, so we must have x = m.

Fermat's Little Theorem

Why does RSA work? CRT +

Fermat's Little Theorem: p is a prime, $p \not|a$. Then $a^{p-1} \equiv 1 \pmod{p}$ and $a^p \equiv a \pmod{p}$.

RSA

$$\begin{split} &N_A = p_A \cdot q_A, \text{ where } p_A, q_A \text{ prime.} \\ &gcd(e_A, (p_A - 1)(q_A - 1)) = 1. \\ &e_A \cdot d_A \equiv 1 \pmod{(p_A - 1)(q_A - 1)}. \\ &\blacktriangleright PK_A = (N_A, e_A) \\ &\blacktriangleright SK_A = (N_A, d_A) \\ &\text{To encrypt: } c = E(m, PK_A) = m^{e_A} \pmod{N_A}. \\ &\text{To decrypt: } r = D(c, SK_A) = c^{d_A} \pmod{N_A}. \end{split}$$

r = m.

Correctness of RSA

Consider
$$x = D(E(m, PK_A), SK_A)$$
.
Note $\exists k \text{ s.t. } e_A d_A = 1 + k(p_A - 1)(q_A - 1)$.
 $x \equiv (m^{e_A} \pmod{N_A})^{d_A} \pmod{N_A} \equiv m^{e_A d_A} \equiv m^{1+k(p_A-1)(q_A-1)} \pmod{N_A}$.

Consider x (mod
$$p_A$$
).
 $x \equiv m^{1+k(p_A-1)(q_A-1)} \equiv m \cdot (m^{(p_A-1)})^{k(q_A-1)} \equiv m \cdot 1^{k(q_A-1)} \equiv m \pmod{p_A}$.

Consider
$$x \pmod{q_A}$$
.
 $x \equiv m^{1+k(p_A-1)(q_A-1)} \equiv m \cdot (m^{(q_A-1)})^{k(p_A-1)} \equiv m \cdot 1^{k(p_A-1)} \equiv m \pmod{q_A}$.

Apply the Chinese Remainder Theorem: $gcd(p_A, q_A) = 1, \Rightarrow x \equiv m \pmod{N_A}.$ So $D(E(m, PK_A), SK_A) = m.$