
Models of Computation, Languages, and Recursion
Part 2

Kevin Schewior
Website: https://sites.google.com/view/kschewior/home

Slides largely by Fabrizio Montesi

https://sites.google.com/view/kschewior/home

Recap: Deterministic Finite Automaton (DFA)
An informal introduction, with an example

Some states are accept states (denoted with a double
circle).
Example (c is an accept state):

a b c
O

o

h

:space:

Recap: A DFA for Full Names, The Recursive
Attempt

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

Recap: Context-Free Grammar (CFG)

● The capital letters that appear on the left are called
non-terminal characters (non-terminals for short).

● S is the start non-terminal.
● All other characters are called terminals, which make

up for the actual content of strings that the CFG can
recognise.

S → Hello T
S → Hey T
T → there

Recap: The language of a CFG

The language of a CFG is the set of all strings that can
be derived by that CFG (starting from S).

The language of this CFG

is {Hello there, Hey there}.

S → Hello T
S → Hey T
T → there

Recap: Another CFG

It’s exactly the same kind of recursion.

S → :UCLetter:L S
S → :UCLetter:L
L → :LCLetter:L
L → :LCLetter:

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

Recap: Another CFG

S → :UCLetter:T
T → :LCLetter:U
U → :LCLetter:U
U → :empty:
U → :space:S

S T
:UCLetter: :LCLetter:

:LCLetter:

U

:space:

Recap: The science of DFAs

● Q: What kind of strings can I recognise with a DFA?
● How do we answer?..
● We need to understand the limitations of DFAs.
● So another interesting question is:

○ Q: What are things that cannot possibly be
recognised with a DFA?

● Which is way more fun. Breaking stuff is the best
part of being a scientist.

● May ask the same questions for CFGs!

Recap: The language of balanced parentheses

● Some correct strings: (), (()), ((())), ()()(), ()(()),
(())((()()())).

● Some incorrect strings: (,), ((), ()), (()(), (())),))((
● Intuitively, a string is in the language if each left

parenthesis has a matching right parenthesis and the
matched pairs are well nested.

● OK, let’s try to come up with a DFA that recognises
this.

Recap: The language of balanced parentheses

● There is no DFA for balanced parentheses.
● Why?
● We need to remember how many open parentheses

we have, and this number has no bound. (We cannot
predict how many there can be.)

● Since a DFA has a finite number of states, there are
always cases where we do not have enough memory.

Balanced parentheses

S → (S)
S → SS
S → ()

Balanced parentheses

Some derivations:
● S → ()
● S → (S) → (())
● S → SS → ()S → ()(S) → ()(SS) → ()(()S) → ()(()())

S → (S)
S → SS
S → ()

Balanced parentheses

S → (S)
S → SS
S → ()

● Some correct strings: (), (()), ((())), ()()(), ()(()),
(())((()()())).

● Some incorrect strings: (,), ((), ()), (()(), (())),))((

Balanced parentheses
S → (S)
S → SS
S → ()

● Why can we do balanced parentheses with a CFG and not
with a DFA?

● Because the kind of recursion that we have in CFGs is
more powerful: it has a memory!

● Specifically, when you “expand” a non-terminal, we
remember what to do after we are done expanding.

Balanced parentheses

S → (S)
S → SS
S → ()

a b
()

c

(

Balanced parentheses

S → (S)
S → SS
S → ()

a b
()

c

(
?? (

A few languages

● The set of the strings ab, abab, ababab, abababab, …
● The set of the strings ab, aabb, aaabbb, aaaabbbb, …
● The set of strings consisting of (,), [, and] such that

○ (and) are balanced taken for themselves
○ [and] are balanced taken for themselves
Examples: ()[], (([)]); Non-Example: ((]]

Does there exist a DFA recognizing them? A CFG?

a b
The End

c

a b
The End

c

Wait a moment...

a b
The End

c

Wait a moment... is that a DFA?

a b
The End

c

Wait a moment... is that a DFA?
No, because transitions are labelled with single characters, not
strings! (See many slides back.)
Don’t take these things too lightly, they can be tricky.

a b
T

c
h

d
e

e f
e

g
n d

:space:

Questions?

h

