
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

November 4, 2022
Marco Chiarandini

DM573 - Introduction to Computer Science

Training Session, Weeks 45-46, Autumn 2022

Solution

Included.

I: To be solved during the exercise class in week 45

Exercise 1. k-Nearest Neighbors: Prediction

Suppose you are trying to predict a continuous response y to an input x and that you are given the set
of training data D = [(x1, y1), . . . , (x11, y11)] reported and plotted in Figure 1.

D =

(8, 8.31)
(14, 5.56)
(0, 12.1)
(6, 7.94)
(3, 10.09)
(2, 9.89)
(4, 9.52)
(7, 7.77)
(8, 7.51)
(11, 8.0)
(8, 10.59)

Figure 1: The data for Exercise 1.

Using 5-nearest neighbors, what would be the prediction on an new input x = 8?

Solution

First, we need to determine the set N5(x) of points from D with the 5 shortest distances from x. Hence,
we calculate the distance from x to each point in D. For example, the distance between x and ~x1 is:

d(~x, ~x1) =
√

(8− 8)2 = 0

Then, once we have calculated all Euclidean distances for x we rank them in increasing order and take
the 5 data points whose corresponding distances are the shortest. Here, we can carry out this process
more easily by inspection of the given plot and conclude that:

N5(x) =

(8, 8.31)
(6, 7.94)
(7, 7.77)
(8, 7.51)
(8, 10.59)

Then the prediction ŷ can be calculated as:

ŷ(x) =
1

k

∑
i|xi∈Nk(x)

yi =
1

5
(8.31 + 7.94 + 7.77 + 7.51 + 10.59) = 8.424

What form of learning is this exercise about?

1

DM573 � Fall 2022 Assignment Sheet

� Supervised learning, regression

� Supervised learning, classi�cation

� Unsupervised learning

� Reinforcement learning

Solution

Supervised learning, regression

Exercise 2. k-Nearest Neighbors: Prediction

Suppose you are trying to predict the class y ∈ {0, 1} of an input (x1, x2) and that you are given the set
of training data D = [((x1,1, x1,2), y1), . . . , ((x11,1, x11,2), y11)] reported and plotted in Figure 2.

D =

((10, 2), 1)
((15, 2), 1)
((6, 11), 1)
((2, 3), 0)
((5, 15), 1)
((5, 14), 1)
((10, 1), 0)
((1, 6), 0)
((17, 19), 1)
((15, 13), 0)
((19, 9), 0)

Figure 2: The data for Exercise 2.

Using the 5-nearest neighbors method, what would the prediction be on the new input ~x = (5, 10)?

Solution

First, we need to determine the set N5(~x) of points from D with the 5 shortest distances from ~x. We
choose to use the Euclidean distance. Hence, we calculate the Euclidean distance from ~x to each point
in D. For example the distance between ~x and ~x1 is:

d(~x, ~x1) =
√

(5− 10)2 + (10− 2)2 ≈ 9.44

Then, once we have calculated all Euclidean distances for x we rank them in increasing order and take
the 5 data points whose corresponding distances are the shortest. Here, we can carry out this process
more easily by inspection of the given plot and conclude that:

N5(~x) =

((6, 11), 1)
((2, 3), 0)
((5, 15), 1)
((5, 14), 1)
((1, 6), 0)

Then, the prediction ŷ is given by majority vote. Since 3 points in N5(x) have y = 1 and 2 points have
y = 0 then 1 wins and ŷ = 1.
What form of learning is this exercise about?

� Supervised learning, regression

� Supervised learning, classi�cation

� Unsupervised learning

� Reinforcement learning

Solution

Supervised learning, classi�cation

2

DM573 � Fall 2022 Assignment Sheet

Exercise 3. Linear Regression: Prediction

As in Exercise 1. you are trying to predict a response y to an input x and you are given the same set of
training data D = [(x1, y1), . . . , (x11, y11)], also reported and plotted in Figure 3. However, now you want
to use a linear regression model to make your prediction. After training, your model looks as follows:

g(x) = −0.37x+ 11.22

The corresponding function is depicted in red in Figure 3. What is your prediction ŷ for the new input
x = 8?

D =

(8, 8.31)
(14, 5.56)
(0, 12.1)
(6, 7.94)
(3, 10.09)
(2, 9.89)
(4, 9.52)
(7, 7.77)
(8, 7.51)
(11, 8.0)
(8, 10.59)

Figure 3: The data for Exercise 3.

Solution

ŷ = g(8) = −0.37× 8 + 11.22 = 8.26

Exercise 4. Linear Regression: Training

Calculate the linear regression line g for the set of points:

D =

(2, 2)
(3, 4)
(4, 5)
(5, 9)

Calculate also the loss of using g to predict the data from D.
Plot the points and the regression line on the Cartesian coordinate system.
[You can carry out the calculations by hand or you can use any program of your choice. Similarly, you
can draw the plot by hand or get aid from a computer program.]

Solution

We use the equations for the closed form solution from the slides:

x̄ =
1

m

m∑
i=1

xi ȳ =
1

m

m∑
i=1

yi

which yield:

x̄ =
2 + 3 + 4 + 5

4
= 3.5 ȳ =

2 + 4 + 5 + 9

4
= 5.0

and

a =

∑m
i=1(xi − x̄)(yi − ȳ)∑m

i=1(xi − x̄)2
b = ȳ − ax̄

which yield:
â = 2.2 b̂ = −2.7

We carry out these calculations in Python using the module Numpy.

3

DM573 � Fall 2022 Assignment Sheet

In [2]: import numpy as np

m = 4

input = np.array([

[2, 2],

[3, 4],

[4, 5],

[5, 9]

])

Then we can slice the matrix to extract only the x or y coordinates:

In [3]: xx = input[:,0]

yy = input[:,1]

xx

Out[3]: array([2, 3, 4, 5])

To plot we import the module pyplot from the 2D plotting library matplotlib

In [4]: import matplotlib.pyplot as plt

plt.figure(1)

plt.scatter(xx, yy, color='b', marker='o')

We are then ready to calculate the parameters of the linear regression using the formulas in the slides.
We must be careful that the division in Python 2.7 by default returns the integral part. To allow �oat
numbers we import another module:

In [5]: from __future__ import division

x_bar = sum(xx)/m

y_bar = sum(yy)/m

print(x_bar)

print(y_bar)

3.5

5.0

The calculations can be performed in vectorized form, that is, working with arrays. sum() sums over the
elements of an array and ** makes the element-wise square of the elements of an array. Hence:

In [6]: a_hat = sum((xx-x_bar)*(yy-y_bar))/sum((xx-x_bar)**2)

b_hat = y_bar - a_hat * x_bar

print(a_hat)

print(b_hat)

4

http://matplotlib.org/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.org/

DM573 � Fall 2022 Assignment Sheet

2.2

-2.7

Finally, we can plot the line. In pytplot the easiest way to plot a line is by giving two points and plotting
the segment between them. We generate the x coordinates and then calculate the corresponding y value:

In [7]: x12 = np.linspace(1, 6, 2)

y12 = np.array(b_hat + a_hat * x12)

plt.figure(1)

plt.scatter(xx, yy, color='b', marker='o')

plt.plot(x12, y12.T, color='r')

plt.show()

To calculate the sum of squared errors for the training data we need to �rst calculate the predictions ŷ
of the linear model on each point of the training set. This can be done as follows:

In [8]: def g(var):

return (b_hat + a_hat * var)

vec_g = np.vectorize(g)

y_hat = g(xx)

L_hat = sum((yy-y_hat)**2)

print L_hat

1.8

Exercise 5. Logical Functions and Perceptrons

Perceptrons can be used to compute the elementary logical functions that we usually think of as underlying
computation. Examples of these functions are AND, OR and NOT.

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

Figure 4: Logical functions and perceptrons. Exercise Exercise 5..

In class, we carried out the veri�cation that the left most perceptron in Figure 4 is a correct representation
of the AND operator.

� Verify that the perceptrons given for the OR and NOT cases in Figure 4 are also correct represen-
tations of the corresponding logical functions.

5

DM573 � Fall 2022 Assignment Sheet

� Design a perceptron that implements the logical function NAND.

Solution

For example weighting the two inputs by -2 and the output by 3.

Later in this Assignment Sheet we will see that there are also Boolean functions that cannot be represented
by a single perceptron alone.

Exercise 6. Multilayer Perceptrons

Determine the truth table of the Boolean function represented by the perceptron in Figure 5:

Figure 5: . The multilayer perceptron of Exercise 6.

Solution

x1 x2 x3 y
0 0 0 0
0 0 1 0
0 1 0 1
1 0 0 0
0 1 1 1
1 1 0 1
1 0 1 1
1 1 1 1

Exercise 7. Single Layer Neural Networks: Prediction

In Exercise 2. we predicted the class y ∈ {0, 1} of an input (x1, x2) with the 5-nearest neighbors method
using the data from set D. We used those data to train a single layer neural network for the same task.
The result is depicted in Figure 6. (We use the convention x0 = −1 in the linear combination of the
inputs.)

0.780
x0 = −1

−0.012
x1

0.128
x2

y

Figure 6: A single layer neural network for the task of Exercise 7.

� Calculate the prediction of the neural network for the new input ~x = (5, 10). Assume a step function
as activation function in the unit (i.e., a perceptron).

Solution

6

DM573 � Fall 2022 Assignment Sheet

The step function implemented by the neuron returns ~θ · ~x > 0. In our case:

~θ · ~x = −0.780− 0.012 · x1 + 0.128 · x2 = 0.44

Since the value is > 0 then ŷ = 1.

� Calculate the prediction of the neural network for the new input ~x = (5, 10). Assume a sigmoid
function as activation function in the unit (which is therefore a sigmoid neuron).

Solution

g(~x) =
1

1 + exp (−0.780 + 0.012 · x1 − 0.128 · x2)
= 0.608

and since g(~x) > 0.5 then ŷ = 1.

� Compare the results at the previous two points against the result in Exercise 2. Are they all
consistent? Is this expected to be always the case? Which one is right?

Solution

The three methods return the same result in this case but they could return di�erent results, in
particular the k-nearest neighbors can be di�erent from the single neuron cases. It is impossible to
say who is right, because we do not know the actual response to x.

� In binary classi�cation, the loss can be de�ned as the number of mispredicted cases. Calculate
the loss for the network under the two di�erent activation functions. Which one performs better
according to the loss?

Solution

We need to repeat the operations at the previous point for all points in D. We can use Python, or
any other program (eg, R), for that. The results are reported in the table, where we used ŷp and
ŷs to indicate the predictions of the perceptron and sigmoid neuron, respectively:

x1 x2 y ~θ · ~x ŷp g(~θ · ~x) ŷs
10. 2. 1. -0.64 0 0.34 0
15. 2. 1. -0.7 0 0.33 0
6. 11. 1. 0.56 1 0.64 1
2. 3. 0. -0.42 0 0.4 0
5. 15. 1. 1.08 1 0.75 1
5. 14. 1. 0.95 1 0.72 1
10. 1. 0. -0.77 0 0.32 0
1. 6. 0. -0.02 0 0.49 0
17. 19. 1. 1.45 1 0.81 1
15. 13. 0. 0.7 1 0.67 1
19. 9. 0. 0.14 1 0.54 1

We observe that both two types of neurons perform in the same way: they predict 4 cases wrong
and 7 right. The training error de�ned as the number of wrong predictions is 4.

� Derive and draw in the plot of Exercise 2. the decision boundaries between 0s and 1s that is implied
by the perceptron and the sigmoid neuron. [See Section 2.1.3 of the Lecture Notes.] Are the points
linearly separable?

Solution

As explained in the answer to Exercise 8. we can derive the decision boundaries as follows. The
decision boundary for the perceptron is ~θ · ~x = 0:

−0.012 ∗ x1 + 0.128 ∗ x2 − 0.780 = 0

7

DM573 � Fall 2022 Assignment Sheet

which is a line indeed.

The decision boundary for the sigmoid neuron is g(~θ · ~x) = 0.5. That is:

1

1 + exp (0.780 + 0.012x1 − 0.128x2)
= 0.5

Simplifying:
1 = 0.5(1 + exp(0.780 + 0.012x1 − 0.128x2))

0.5 = 0.5 exp(0.780 + 0.012x1 − 0.128x2)

loge 1 = (0.780 + 0.012x1 − 0.128x2)

loge 1 = (0.780 + 0.012x1 − 0.128x2)

0.012x1 − 0.128x2 + 0.780 = 0

which is also a line. The two neurons lead to the same separator function, which is depicted in
Figure 7!

Note, however, that in the traing phase, that is, when the values of the weights have to be decided,
using one or the other activation function can lead to di�erent values for ~θ. This is because the
output of the sigmoid function is a real value while the one of the step function is either 0 or 1.
Hence, the loss function to optimize is di�erent and may have minima in di�erent points of the
space of parameters ~θ.

In Figure 7 we can recognise the 4 points that are misclassi�ed (the four red dots below the line).
We can also see that the separator found is perhaps not the best one. It seems that a separator
with only two points mispredicted should be possible. How can better parameters be found?

Finally, we can observe that the data points are not linearly separable and that hence a training
error equal to zero on this training set is not possible with the single layer neurons analysed.

Below I report part of the Python code behind these calculations. It assumes that the module
numpy is imported and that the data set D is put in the array C.

Training error:

In [13]: import math

def stepfunc(x):

return -0.780 -0.012*x[0] + 0.128*x[1]

def logistic(x):

return 1/(1+math.exp(0.780 +0.012*x[0] - 0.128*x[1]))

print(stepfunc([5,10])) # > 0

print(logistic([5,10])) # > 0.5

0.43999999999999995

0.6082590307465143

In [14]: l = np.apply_along_axis(logistic,1,C[:,0:2])

s = np.apply_along_axis(stepfunc,1,C[:,0:2])

lb = np.where(l>0.5,1,0)

sb = np.where(s>0,1,0)

print("loss step function: ", sum(sb != C[:,2]))

print("loss logistic: ", sum(lb != C[:,2]))

%%

loss step function: 4

loss logistic: 4

8

DM573 � Fall 2022 Assignment Sheet

Figure 7: The linear separator for the Exercise Exercise 7.

Separator:

In [15]: C0 = C[C[:,2]==0]

C1 = C[C[:,2]==1]

l1=plt.scatter(C1[:,0], C1[:,1], s=100, marker='o',color="red")

l0=plt.scatter(C0[:,0], C0[:,1], s=100, marker="v")

#plt.axis.xlabel=('x')

#plt.axis.Axis.ylabel=('x')

plt.xlabel('x1')

plt.ylabel('x2')

plt.legend((l0,l1),('0','1'),bbox_to_anchor=(1.05,1),loc=2)

x1 = np.linspace(0, 20)

x2 = np.linspace(0, 20)[:, None]

plt.contour(x1, x2.ravel(), 0.780 +0.012*x1 - 0.128*x2,[0])

plt.show()

%%

Exercise 8. Expressivness of Single Layer Perceptrons

Is there a Boolean (logical) function in two inputs that cannot be implemented by a single perceptron?
Does the answer change for a single sigmoid neuron?

Solution

Yes, there is a Boolean (logical) function in two inputs that cannot be implemented by a single perceptron.
We saw, for example, in the lecture notes that the algebraic expression of a perceptron is:

output :=

{
0 if

∑
j wjxj ≤ threshold

1 if
∑

j wjxj > threshold

Then the decision boundary is
p∑

j=1

wjxj = threshold

In the case of two inputs, x1 and x2, this becomes: w1x2 + w2x2 = threshold, which corresponds to the
equation of a line in the Cartesian plane:

x2 = −w1

w2
x1 +

1

w2
threshold

(you might have seen this with y in place of x2 and x in place of x1.) Figure 8 taken from the slides gives
an example of a non separable case:

9

DM573 � Fall 2022 Assignment Sheet

Figure 8: The �gure is part of the solution only.

A sigmoid neuron would have the same problem. Indeed, if we use the value 0.5 as the discriminant on
the output of a sigmoid neuron to answer 0 or 1 then the decision boundary corresponds to:

1

1 + exp(−
∑p

j=1 wjxj − w0x0)
= 0.5

(We continue assuming x0 = −1 and the term b = w0x0 = −w0 is called the bias. It controls a translation
of the sigmoid while the other terms determine the shape of the curve.). Solving in ~x we obtain an equation
of the form: ∑

j

wjxj − b = constant

which therefore is also a line.

10

DM573 � Fall 2022 Assignment Sheet

II: To be solved at home before the exercise class in week 46

Exercise 1. k-Nearest Neighbors: Prediction

Suppose you are trying to predict a continuous response y to an input x and that you are given the set
of training data D = [(x1, y1), . . . , (x8, y8)] reported and plotted in Figure 9.

D =

11. 6.36
14. 5.98
6. 8.02
10. 7.17
18. 5.51
18. 4.77
3. 10.25
4. 9.45

Figure 9: The data for Exercise 1.

Using 3-nearest neighbors, what would be the prediction on an new input x = 12?

Solution

The procedure is the same as for the Exercise I.1. The �nal output is 6.50.
What form of learning is this exercise about?

� Supervised learning, regression

� Supervised learning, classi�cation

� Unsupervised learning

� Reinforcement learning

Solution

Supervised learning, regression

Exercise 2. k-Nearest Neighbors: Prediction

Suppose you are trying to predict the class y ∈ {0, 1} of an input (x1, x2) and that you are given the set
of training data D = [((x1,1, x1,2), y1), . . . , ((x9,1, x9,2), y9)] reported and plotted in Figure 10.

D =

((4, 2), 0)
((16, 7), 0)
((10, 17), 1)
((12, 10), 1)
((8, 6), 0)
((3, 8), 1)
((1, 6), 0)
((9, 3), 0)
((17, 7), 1)

Figure 10: The data for Exercise 2.

Using the 3-nearest neighbors method, what would the prediction be on the new input ~x = (14, 8)?

11

DM573 � Fall 2022 Assignment Sheet

Solution

By Euclidean distance:

N3(~x) =

((12, 10), 1)
((16, 7), 0)
((17, 7), 1)

Then, the prediction ŷ is given by majority vote. Since 2 points in N3(x) have y = 1 and 1 points has
y = 0 then 1 wins and ŷ = 1.
What form of learning is this exercise about?

� Supervised learning, regression

� Supervised learning, classi�cation

� Unsupervised learning

� Reinforcement learning

Solution

Supervised learning, classi�cation

Exercise 3. Linear Regression: Training

Calculate the linear regression line g for the set of points:

D =

5 44
16 16
13 20
19 3
9 29

Calculate also the loss of using g to predict the data from D.
Plot the points and the regression line on the Cartesian coordinate system.
[You can carry out the calculations by hand or you can use any program of your choice. Similarly, you
can draw the plot by hand or get aid from a computer program.]

Solution

We can calculate the parameters of the lines similarly as in the Exercise I.4 and �nd:

â = −2.72 b̂ = 56.1

The training error or loss is L̂ = 23.37 and the plot:

Figure 11: Plot for Exercise 3..

12

DM573 � Fall 2022 Assignment Sheet

Exercise 4. Feed-Forward Neural Networks: Single Layer Perceptron

Determine the parameters of a single perceptron (that is, a neuron with step function) that implements
the majority function: for n binary inputs the function outputs a 1 only if more than half of its inputs
are 1.

Solution

Set all input weights to 1 and the threshold (bias) to n/2.

Exercise 5. Single Layer Perceptrons

Can you represent the two layer perceptron of Figure 12 as a single perceptron that implements the same
function? If yes, then draw the perceptron.

Figure 12: A two layer neural network

Solution

It corresponds to a single perceptron with two inputs of weight .35 each. Indeed, the output of the �rst
neuron is multiplied by 0 in the second, hence it has no in�uence whatever its output is. This can also
be shown by the equivalent outputs of the two networks on all 4 possible combinations of inputs.

Exercise 6. Logical Functions and Neural Networks

The NAND gate is universal for computation, that is, we can build any computation up out of NAND
gates. We saw in Exercise 5. that a single perceptron can model a NAND gate. From here, it follows
that using networks of perceptrons we can compute any logical function.
For example, we can use NAND gates to build a circuit which adds two bits, x1 and x2. This requires
computing the bitwise sum, x1 XOR x2, as well as a carry bit which is set to 1 when both x1 and x2 are
1, i.e., the carry bit is just the bitwise product x1x2. The circuit is depicted in Figure 13.

Figure 13: The adder circuit of Exercise 6.. All gates are NAND gates.

Draw a neural network of NAND perceptrons that would simulate the adder circuit from the �gure. [You
do not need to decide the weights. You have already discovered which weights for a single perceptron
would implement a NAND function in Exercise 5.]

What is the advantage of neural networks over logical circuits when representing Boolean functions?

Solution

The exercise provides an example of how any logical function can be implemented by composition of
perceptrons in a (multi-layered) network. The computational universality of perceptrons is reassuring
because it tells us that perceptron networks can be as powerful as any other computing device. NN are
however not merely a new type of NAND gate.

13

DM573 � Fall 2022 Assignment Sheet

It turns out that we can devise learning algorithms which can automatically tune the weights and biases
of a network of arti�cial neurons. This tuning happens in response to external stimuli, without direct
intervention by a programmer. These learning algorithms enable us to use arti�cial neurons in a way
which is radically di�erent to conventional logic gates. Instead of explicitly laying out a circuit of NAND
and other gates, our neural networks can simply learn to solve problems, sometimes problems where it
would be extremely di�cult to directly design a conventional circuit.

14

	To be solved during the exercise class in week 45
	k-Nearest Neighbors: Prediction
	k-Nearest Neighbors: Prediction
	Linear Regression: Prediction
	Linear Regression: Training
	Logical Functions and Perceptrons
	Multilayer Perceptrons
	Single Layer Neural Networks: Prediction
	Expressivness of Single Layer Perceptrons

	To be solved at home before the exercise class in week 46
	k-Nearest Neighbors: Prediction
	k-Nearest Neighbors: Prediction
	Linear Regression: Training
	Feed-Forward Neural Networks: Single Layer Perceptron
	Single Layer Perceptrons
	Logical Functions and Neural Networks

