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Graph Theory -
Motivation
• Finding communities in networks, such as social 

media (friend/connection recommendations), or in 
the recent days for possible spread of COVID19 in 
the community through contacts.

• Ranking/ordering hyperlinks in search engines.
• GPS/Google maps to find the shortest path home.
• Study of molecules and atoms in chemistry.
• DNA sequencing
• Computer network security

….. and many more….



Chemical Compounds

Isomers of Hexane
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Metabolic Networks

Metabolic Network of E. coli.
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What is a graph?

Vertices: P, Q, R, S, T
Edges: all the lines
Degree of a vertex: number of edges with that vertex as an end-point 
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Interpretation:

The graph from the last slide might depict this roadmap. Note that the intersection 
of the lines PS and QT is not a vertex, since it does not correspond to a cross-roads
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Another Interpretation:

If P, Q, R, S and T represent football teams, then the existence of an edge might 
correspond to the playing of a game between the teams at its end-points. Thus, team P 
has played against teams Q, S and T, but not against team R. In this representation, the 
degree of vertex is the number of games played by the corresponding team. 
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Two different graphs? No!

In the right graph we have removed the 'crossing' of the lines PS and QT by drawing the line PS outside the 
rectangle PQST. The resulting graph still tells us whether there is a direct road from one intersection to another, 
and which football teams have played which. The only information we have lost concerns 'metrical' properties, 
such as the length of a road and the straightness of a wire.
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The first scientific article using the term graph
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Directed Graphs (Digraphs)

Assume again a graph depicts a roadmap. The study of directed graphs (or digraphs, as we abbreviate them) 
arises when making the roads into one-way streets. An example of a digraph is given above, the directions of the 
one-way streets being indicated by arrows. (In this example, there would be chaos at T, but that does not stop us 
from studying such situations!) 
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Walks, Paths, and Cycles

Much of graph theory involves 'walks' of various kinds. A walk is a 'way of getting from one vertex to another', 
and consists of a sequence of edges, one following after another. For example, in the above figure P —> Q—>R is 
a walk of length 2, and P —> S —> Q —> T —> S —> R is a walk of length 5. A walk in which no vertex appears 
more than once is called a path; for example and P —> Q —> R —> S is a path. A walk in which you end where 
you started, for example  Q —> S —> T —> Q , is called a cycle. 11



Connectedness

Some graphs are in two or more parts. For example, consider the graph whose vertices are the stations of the Copenhagen 
Metro and the New York Subway, and whose edges are the lines joining them. It is impossible to travel from Østerport to 
Grand Central Station using only edges of this graph, but if we confine our attention to the Copenhagen Metro only, then we 
can travel from any station to any other. A graph that is in one piece, so that any two vertices are connected by a path, is a 
connected graph; a graph in more than one piece is a disconnected graph. 
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Weighted Graphs

Consider the above graph: it is a connected graph in which a non-negative number is assigned to each edge. Such a graph is 
called a weighted graph, and the number assigned to each edge e is the weight of e, denoted by w(e). 
Example: Suppose that we have a 'map' of the form shown above, in which the letters A to L refer to towns that are 
connected by roads. Then the weights may denote the length of these roads.
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Shortest Path (between one pair of vertices)

What is the length of the shortest path (=distance) from A to L? 

The problem is to find a path from A to L with minimum total weight. This problem is called the Shortest Path Problem. Note 
that, if we have a weighted graph in which each edge has weight 1, then the problem reduces to that of finding the number of 
edges in the shortest path from A to L. 
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All-Pairs Shortest Path

What is the length of the shortest path (=distances) from any vertex to any vertex? 

This problem is called the All-Pairs Shortest Path Problem
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All-Pairs Shortest Path : A Solution for Some Cities in Australia
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One of the most decorative 
tables of distances (in Roman 
miles) between major 
European cities printed in 
the eighteenth century. Not 
only were the data extremely 
useful for traveling but also 
for sending a letter, because 
distance, not weight, 
determined the price.

(From the “Historic Maps Collection”, 
Princeton University Library, link: here

http://libweb5.princeton.edu/visual_materials/maps/websites/

thematic-maps/introduction/introduction.html)
17
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Matrix Representations for Graphs

If G is a graph with vertices labelled {1, 2, ...}, its adjacency matrix A is the n x n matrix whose ij-th entry is the number of 
edges joining vertex i and vertex j. Two nodes i and j are adjacent if the  ij-th entry in the adjcacency matrix is larger than 0. 

If, in addition to the vertices, the edges are labelled {1, 2,..., m}, its incidence matrix M is the n x m matrix whose ij-th entry 
is 1 if vertex i is incident to edge j and 0 otherwise. The figure above shows a labelled graph G with its adjacency and 
incidence matrices. 18



Adjacency Matrix for Weighted Graphs

Given a weighted graph G, the adjacency matrix A is the matrix whose ij-th entry is the weight of the 
edge between vertex i and vertex j. 
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Matrix-Matrix Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓ ◆

20



Matrix-Matrix Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓ ◆
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Matrix-Matrix Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓
6 12 20
10 14 8

◆

M ⇥N = R

rij =
X

k

mik ⇤ nkj
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Matrix-Matrix Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓
6 12 20
10 14 8

◆

✓
r00 r01 r02
r10 r11 r12

◆ ✓
r11 r12 r13
r21 r22 r23

◆
Zero-based Numbering (“Zero indexed”) One-based Numbering (“One indexed”)
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Zero-Indexing 

(picture from xkcd.com)

Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index 0, 
rather than the index 1 as is typical in everyday non-mathematical/non-programming circumstances.

Make sure that it is clear what you mean, when you say, e.g., the “row with index 1” in a matrix.
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Matrix-Matrix Multiplication in Python (for Square Matrices)

Number of additions per result[i][j] entry: size
Number of multiplications per result[i][j] entry: size
Number of entries in the result matrix: size x size
Overall  number of operations (additions and multiplications): 2 x size x ( size x size )

Overall computational runtime: O(size3)

Provided Code: matMult.py
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Matrix-Matrix Multiplication in Python 

Provided Code: matMult.py
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Comments to Python Code

• Creating a list of three 0’s :

• Creating a list of two lists with three 0’s (i.e., a “matrix” of size 2 x 3):
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Matrices in Python: Implemented as Lists of Lists:

“Matrix” dimensions:

M has len(M) many rows and len(M[0])many columns
N has len(N) many rows and len(N[0])many columns
The result needs to have len(M)many rows and len(N[0])many columns

Provided Code: matMult.py
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Matrices in Python: Implemented as Lists of Lists:

Provided Code: matTutor.py
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Powers of the Adjacency Matrix

A =

0

BBBBBB@

1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 0 0 0
4 0 0 0 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

1

CCCCCCA

Ak = A⇥A . . .⇥A| {z }
k times

is called the k-th power of the adjacency matrix
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A2 =

0

BBBBBB@

1 2 3 4 5 6

1 2 1 1 1 1 0
2 1 3 0 1 1 0
3 1 0 1 0 1 0
4 1 1 0 2 0 0
5 1 1 1 0 3 1
6 0 0 0 0 1 1

1

CCCCCCA
A3 =

0

BBBBBB@

1 2 3 4 5 6

1 2 4 1 1 4 1
2 4 2 3 1 5 1
3 1 3 0 1 1 0
4 1 1 1 0 4 2
5 4 5 1 4 2 0
6 1 1 0 2 0 0

1

CCCCCCA
A4 =

0

BBBBBB@

1 2 3 4 5 6

1 8 7 4 5 7 1
2 7 12 2 6 7 1
3 4 2 3 1 5 1
4 5 6 1 6 2 0
5 7 7 5 2 13 4
6 1 1 1 0 4 2

1

CCCCCCA

Theorem:
If G is a graph with adjacency matrix A, and vertices
with indices 1, . . . , n then for each positive integer k

the ij-th entry of Ak

is
the number of di↵erent walks using exactly k edges

from node i to node j

33



A2 =

0

BBBBBB@

1 2 3 4 5 6

1 2 1 1 1 1 0
2 1 3 0 1 1 0
3 1 0 1 0 1 0
4 1 1 0 2 0 0
5 1 1 1 0 3 1
6 0 0 0 0 1 1

1

CCCCCCA
A3 =

0

BBBBBB@

1 2 3 4 5 6

1 2 4 1 1 4 1
2 4 2 3 1 5 1
3 1 3 0 1 1 0
4 1 1 1 0 4 2
5 4 5 1 4 2 0
6 1 1 0 2 0 0

1

CCCCCCA
A4 =

0

BBBBBB@

1 2 3 4 5 6

1 8 7 4 5 7 1
2 7 12 2 6 7 1
3 4 2 3 1 5 1
4 5 6 1 6 2 0
5 7 7 5 2 13 4
6 1 1 1 0 4 2

1

CCCCCCA

Example :
Consider the two vertices with index 4 and 5 in 𝐴!

Length 4 walks:
1) 4 -> 5 -> 1 -> 2 -> 5
2) 4 -> 5 -> 2 -> 1 -> 5

There are 2 walks of length 4. 
Furthermore, 𝐴!"! =2. 

A =

0

BBBBBB@

1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 0 0 0
4 0 0 0 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

1

CCCCCCA
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In Python3

Provided Code: adjacencyMatMult.py 35



Proof: (also on (virtual) blackboard)
Let G be a graph with adjacency matrix A, and vertices 1, . . . , n. We proceed
by induction on k to obtain the result.

Base Case:
Let k = 1. A1 = A. aij is the number of edges from i to j, which is identical to
the number of walks of length 1 from i to j.

Inductive Step:

Assume true for a positive integer k. Let bij be the ij-th entry of Ak, and let
aij be the ij-th entry of A. By the inductive hypothesis bij is the number of
walks of length k from i to j. Consider the ij-th entry of Ak+1 = A ⇥ Ak, i.e,
Ak+1

ij = ai1b1j + ai2b2j + . . . + ainbnj =
Pn

k=1 aikbkj . Consider ai1b1j . This is
equal to the number of walks of length 1 from i to 1 times the number of walks
of length k from 1 to j. This is therefor equal to the number of walks of length
k + 1 from i to j, where 1 is the second vertex. This argument holds for each
vertex m, i.e., aimbmj is the number of walks from i to j in which m is the
second vertex. Therefore, the sum is the number of all possible walks from i
to j. 37



Algorithm for All-Pairs Shortest Path

Weighted Graph G with weights on edges:

• What is the distance (=length of the 
shortest path) between A and L ?

17

Generalization:
• What are the distances of 

ALL paths (=lenghts of ALL 
shortest paths) between all 
pairs of nodes?

… and how can we find all 
these distances? 38



The Edge Weight Matrix W

Definition:

Wij =

8
><

>:

the weight of the edge (i, j) if the edge (i, j) exists

0 if i = j

1 else

Example:

W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 2 1
2 1 0 2 1 4 1
3 1 2 0 1 1 3

4 1 1 1 0 6 1

5 2 4 1 6 0 1
6 1 1 3 1 1 0

1

CCCCCCCCCA

Note: Matrix W has entries 
corresponding to infinity, as it might 
be impossible to reach vertex j from 
vertex i via 1 edge.

We assume all weights are not 
negative, i.e.,  larger or equal to 0.

Interpretation:
Wij is the distance from vertex i to vertex j using maximally 1 edge

weights are depicted in red
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A modified Matrix-Matrix Multiplication

0

@
1 0 2
1 2 4
3 1 2

1

A�

0

@
1 2 3
4 5 2
1 2 5

1

A =

0

@
2 3 2
2 3 4
3 4 3

1

A

M �N = R

Note: this operation is very similar to the 
standard matrix-matrix multiplication: however, 
for computation of the ij-th entry the 
multiplication is replaced by addition, and 
addition is replaced by the minimum operation.

Definition:
rij = mink{mik + nkj}

Example:
r33 = min{3 + 3, 1 + 2, 2 + 5} = 3 40



Theorem:
If G is a weighted graph with edge weight matrix W ,
and vertices with indices 1, . . . , n then for each positive
integer k

the ij-th entry of W k = W �W � . . .�W| {z }
k times

is
the length of the shortest path from i to j

using maximally k edges
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Examples :
Consider the two vertices with index 4 and 1 in 𝑊!

Shortest Path using maximally 4 edges:
4 -> 6 -> 3 -> 2 -> 1 (distance 7)

W 2 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 1
2 1 0 2 10 3 5

3 3 2 0 4 6 3

4 8 10 4 0 6 1

5 2 3 6 6 0 7

6 1 5 3 1 7 0

1

CCCCCCCCCA

W 3 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 8 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W 4 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 7 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 7 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

Consider the two vertices with index 5 and 3 in 𝑊!

Shortest Path using maximally 4 edges:
5 -> 1 -> 2 -> 3 (distance 5)

W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 2 1
2 1 0 2 1 4 1
3 1 2 0 1 1 3

4 1 1 1 0 6 1

5 2 4 1 6 0 1
6 1 1 3 1 1 0

1

CCCCCCCCCA
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Matrix-Matrix Multiplication in Python (for Square Matrices)
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Modified Matrix-Matrix Multiplication in Python (for Square Matrices)

Standard Matrix-
Matrix Multiplication:

Provided Code: shortestPaths.py 45



In Python3

Provided Code: shortestPaths.py
Note: python3 required because of inf
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W 2 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 1
2 1 0 2 10 3 5

3 3 2 0 4 6 3

4 8 10 4 0 6 1

5 2 3 6 6 0 7

6 1 5 3 1 7 0

1

CCCCCCCCCA

W 3 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 8 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W 4 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 7 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 7 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W 5 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 7 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 7 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 2 1
2 1 0 2 1 4 1
3 1 2 0 1 1 3

4 1 1 1 0 6 1

5 2 4 1 6 0 1
6 1 1 3 1 1 0

1

CCCCCCCCCA

W 6=W 2 6=W 3 6=W 4=W 5=W 6= . . .

Assume all edge weights are not negative. The number of edges needed for a shortest path can 
maximally be n-1, where n is the number of vertices in the graph. If the path would go via n edges, 
then you would have to visit at least one vertex twice, but then the path cannot be a shortest path 
anymore. Obviously 𝑊! = 𝑊"#$ for all k>n-1.

Answer: n� 1 (which is identical to |V |� 1)

Which value of k is necessary, in order to have W k

contain all the pairwise distances of all vertexes?

49



Lemma:
If G is a weighted graph with edge weight matrix W ,
and vertices with indices 1, . . . , n then

the ij-th entry of Wn�1 = W �W � . . .�W| {z }
n � 1 times

is
the distance from i to j

D := Wn�1 is called the distance matrix of the graph G.
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Computation of the Distance Matrix by Repeated Squaring

Wn�1 =

0

BBBBBBBBBBBBBBBB@

0

BBBBBBBBBBB@

0

BBBBBB@

0

B@(W �W )| {z }
W 2

�W

1

CA

| {z }
W 3

�W

1

CCCCCCA

| {z }
W 4

�W

1

CCCCCCCCCCCA

| {z }
W 5

� . . .�W

1

CCCCCCCCCCCCCCCCA

| {z }
Wn�1

W (2k) =

0

BBBBBBBBBBB@

0

BBBBBBBBBBB@

0

BBBBBB@

0

B@(W �W )| {z }
W 2

1

CA

2

| {z }
W 4

1

CCCCCCA

2

| {z }
W 8

1

CCCCCCCCCCCA

2

. . .

1

CCCCCCCCCCCA

2

| {z }
W (2k)

n-2 matrix-matrix multiplication are needed in 
order to compute the distance matrix 𝐷 = 𝑊"#$

k matrix-matrix multiplication are needed (namely 
squaring a matrix k times) in order to compute the 
matrix            

2!has to be larger or equal to n-1, or equivalently, 
k has to be larger or equal to log%(𝑛 − 1)

W (2k)

Example: Consider a graph G with 101 vertices. In order to compute the distance matrix D = 𝑊$&&, the left 
approach needs to make 99 matrix-matrix multiplications. The right approach (called repeated squaring) 
requires only 7 matrix-matrix multiplications, as 2' = 128, and D = 𝑊$%( = 𝑊$&&
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Test in Python3

Note: ceil(log2(size-1))returns 
the smallest integer larger or equal to 
log2(size-1), i.e., R will be the 
distance matrix after this for loop.

Provided Code: timing.py 52



The most obvious Application of Computing the Distance Matrix:
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Another Application of the Distance Matrix: 
Predicting Boiling Points of Paraffins

In 1947 Harry Wiener defined the Wiener-Index of a graph G in order to predict the 
boiling point of different paraffins. He used the graph representation G of the 
carbon backbone of a molecule with n carbon atoms and calculated the Wiener-
Index the sum of all distances between all pairs of vertexes, i.e. 

He predicted the boiling point 𝑡/ to be

W(G) =
1

2

nX

i=1

nX

j=1

Dij

tB = t0 �
✓
98

n2
(w0 �W(G)) + 5.5 · (p0 � p)

◆

with t0 = 745.42 · log10(n+ 4.4)� 689.4

w0 =
1

6
· (n+ 1) · n · (n� 1)

p0 = n� 3

p = the number of shortest paths i ! . . . ! j of length 3 in G with i < j

= half of the number of entries ”3” in the distance matrix D 55



Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

1
4 6

5
2

3 W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 1 1
2 1 0 1 1 1 1
3 1 1 0 1 1 1
4 1 1 1 0 1 1

5 1 1 1 1 0 1
6 1 1 1 1 1 0

1

CCCCCCCCCA

D = Wn�1 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 2 1 2 2 3

2 2 0 1 2 2 3

3 1 1 0 1 1 2

4 2 2 1 0 2 1

5 2 2 1 2 0 3

6 3 3 2 1 3 0

1

CCCCCCCCCA

W(G) =
1

2

nX

i=1

nX

j=1

Dij = 28

t0 = 68.72

w0 =
1

6
· 5 · 6 · 7 = 35

p0 = 6� 3 = 3

p = 3

The chemical compound

The carbon backbone
Graph G Edge Weight Matrix

Distance Matrix
Calculation of Wiener Index and other parameters, 
as well as the resulting boiling point prediction.

Note: Depending on how you chose to label your graph, the edge 
weight matrix might look different. This won’t matter for the 
subsequent calculations.
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Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

Predicted Boiling Point: tB = 49.66

Real Boiling Point: trealB ⇡ 49.7� 50.0

The prediction of boiling points of paraffins based on the Wiener-Index of the 
corresponding molecular graph is amazingly accurate. Try it yourself (see 
exercises)! Intuitively, the Wiener-Index quantifies the “compactness” of a graph 
(or molecule). Long single chained molecules with n carbons have a larger 
Wiener-Index than molecules that contain many branches. Long molecules tend 
to align nicely, and have therefore usually a higher boiling point.  
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