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Symmetric key cryptography

Alice and Bob share a single secret key SK .

For Alice to send message m to Bob in encrypted form, Alice
computes:
c = E (m,SK ).

To decrypt c , Bob computes:
r = D(c , SK ).

Of course, r = m must be guaranteed by the pair of functions E
and D constituting the cryptosystem.
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Example of a symmetric key system: Caesar cipher

Idea: shift cyclically all letters of the alphabet by the same
amount. The secret key SK is the shift. For SK = 3, encryption is
given by the following table (A becomes D, B becomes E, etc.):

A B C D E F G H I J K L M N O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D E F G H I J K L M N O P Q R
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P Q R S T U V W X Y Z Æ Ø Å
15 16 17 18 19 20 21 22 23 24 25 26 27 28

S T U V W X Y Z Æ Ø Å A B C
18 19 20 21 22 23 24 25 26 27 28 0 1 2
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Example of a symmetric key system: Caesar cipher

Suppose the following was encrypted using a Caesar cipher and the
Danish alphabet. The key is unknown. How would you try to
decrypt it?

ZQOØQOØ, RI.

What does this say about how many keys should be possible?
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Some symmetric key systems

▶ Caesar Cipher (< 100 BC, unknown)

▶ . . .

▶ . . .

▶ Enigma (1930-40, German army)

▶ DES (1976, IBM)

▶ Triple DES (1978-81, Walter Tuchman, Ralph Merkle and
Martin Hellman)

▶ IDEA (1991, James Massey, Xuejia Lai)

▶ Blowfish (1993, Bruce Schneider)

▶ AES (2001, Joan Daemen and Vincent Rijmen)

Crossed out systems are considered broken by now.
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Public key cryptography [Hellman, Diffie, Merkle, 1976]

Bob — two keys: PKB ,SKB

PKB — Bob’s public key
SKB — Bob’s private (secret) key

For Alice to send message m to Bob, Alice computes:
c = E (m,PKB).

To decrypt c, Bob computes:
r = D(c, SKB).

Of course, r = m must be guaranteed by the pair of functions E
and D constituting the cryptosystem.

It must also be “hard” to compute SKB from PKB .

[Public key cryptography is also called asymmetric key
cryptography.]
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Recap of Number Theory

Definition. Suppose a, b ∈ ZZ , a > 0.
The terminology/notation below all mean the same, namely that
∃c ∈ ZZ such that b = ac .

▶ a divides b

▶ a | b
▶ a is a factor of b

▶ b is a multiple of a

The notation e ̸ |f means e does not divide f .

Theorem. a, b, c ∈ ZZ . Then

1. if a|b and a|c , then a|(b + c)

2. if a|b, then a|bc ∀c ∈ ZZ

3. if a|b and b|c , then a|c .
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Recap of Number Theory

Definition. For p ∈ ZZ , p > 1 we say that

▶ p is prime if 1 and p are the only positive integers which
divide p.
2, 3, 5, 7, 11, 13, 17, ...

▶ p is composite if it is not prime.
4, 6, 8, 9, 10, 12, 14, 15, 16, ...
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Recap of Number Theory

Theorem. a ∈ ZZ , d ∈ IN
∃ unique q, r , 0 ≤ r < d such that a = dq + r

d – divisor
a – dividend
q – quotient
r – remainder = a mod d

Definition. gcd(a, b) = greatest common divisor of a and b
= largest d ∈ ZZ such that d |a and d |b

If gcd(a, b) = 1, then a and b are relatively prime.
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Recap of Number Theory

Definition. a ≡ b (mod m) — a is congruent to b modulo m
if m | (a− b).

m | (a− b) ⇔ ∃k ∈ ZZ such that a = b + km.

Theorem. a ≡ b (mod m) c ≡ d (mod m)
Then a+ c ≡ b + d (mod m) and ac ≡ bd (mod m).

Proof.(of first) ∃k1, k2 such that
a = b + k1m c = d + k2m
a+ c = b + k1m + d + k2m

= b + d + (k1 + k2)m □
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Recap of Number Theory

Definition. a ≡ b (mod m) — a is congruent to b modulo m
if m | (a− b).

m | (a− b) ⇒ ∃k ∈ ZZ such that a = b + km.

Examples.

1. 15 ≡ 22 (mod 7)?

2. 15 ≡ 1 (mod 7)?

3. 15 ≡ 37 (mod 7)?

4. 58 ≡ 22 (mod 9)?

Note the difference to:

1. 15 = 1 mod 7?

2. 1 = 15 mod 7?
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RSA — a public key system [Rivest, Shamir, Adleman,
1977]

Choose two primes p, q. Set N = p · q.
Find e > 1 such that gcd(e, (p − 1)(q − 1)) = 1.
Find d such that e · d ≡ 1 (mod (p − 1)(q − 1)).

▶ PK = (N, e)

▶ SK = (N, d)

To encrypt: c = E (m,PK ) = me (mod N).
To decrypt: r = D(c ,SK ) = cd (mod N).

One can prove that r = m (if 0 ≤ m < N).

Here, m is the message, c is the cryptotext (the encrypted
message). Note: any message of less than log2N bits can be seen
as a binary number m with 0 ≤ m < N. For longer messages, chop
it up and encrypt each part individually.
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RSA, an example

Recap:
Choose two primes p, q. Set N = p · q.
Find e > 1 such that gcd(e, (p − 1)(q − 1)) = 1.
Find d such that e · d ≡ 1 (mod (p − 1)(q − 1)).

▶ PK = (N, e)

▶ SK = (N, d)

To encrypt: c = E (m,PK ) = me (mod N).
To decrypt: r = D(c ,SK ) = cd (mod N).

Example:
p = 5, q = 11 (hence N = 55), e = 3, d = 27, m = 8.
Then gcd(e, (p − 1)(q − 1)) = gcd(3, 4 · 10) = 1, as required.
Then e · d = 81, so e · d ≡ 1 (mod 4 · 10), as required.
To encrypt m: c = 83 (mod 55) = 17.
To decrypt c: r = 1727 (mod 55) = 8.
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RSA, one example more

Recap:
N = p · q, where p, q prime.
gcd(e, (p − 1)(q − 1)) = 1.
e · d ≡ 1 (mod (p − 1)(q − 1)).

▶ PK = (N, e)

▶ SK = (N, d)

To encrypt: c = E (m,PK ) = me (mod N).
To decrypt: r = D(c ,PK ) = cd (mod N).

Try using N = 35, e = 11 as keys.
Factor 35 and check the requirement on e.
What is d? Try d = 11 and check the requirement on d .
Encrypt m = 4. Decrypt the result.

Did you get c = 9? And r = 4?
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An Application: Digital Signatures with RSA

Suppose Alice wants to sign a document m such that:

▶ No one else could forge her signature

▶ It is easy for others to verify her signature

Note m has arbitrary length.
RSA is used on fixed length messages.
Alice uses a cryptographically secure hash function h, meaning
that:

▶ For any message m′, h(m′) has a fixed length (e.g., 2048 bits)

▶ It is conjectured “hard” for anyone to find 2 messages
(m1,m2) such that h(m1) = h(m2).
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Digital Signatures with RSA

Then Alice “decrypts” h(m) with her secret RSA key (NA, dA)

s = (h(m))dA (mod NA)

and publishes the document m and the signature s.

Bob verifies her signature using her public RSA key (NA, eA) and h:

c = seA (mod NA)

He accepts if and only if

h(m) = c

. This works because seA (mod NA) =

((h(m))dA)eA (mod NA) = ((h(m))eA)dA (mod NA) = h(m).
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Combining symmetric and public key systems

Problem: Public key systems are slower in practice than symmetric
key systems.

Solution: Use a symmetric key system for large messages.
For each such symmetric key system session, create a new key for
it and start by sending this key encrypted with a public key system.

I.e., to encrypt a message m to send to Bob:

▶ Choose a random session key k for a symmetric key system
(e.g., AES)

▶ Encrypt k with Bob’s public key — Result ke
▶ Encrypt m with k — Result me

▶ Send ke and me to Bob

How does Bob decrypt? Why is this efficient?

19 / 49



Combining symmetric and public key systems

Problem: Public key systems are slower in practice than symmetric
key systems.

Solution: Use a symmetric key system for large messages.
For each such symmetric key system session, create a new key for
it and start by sending this key encrypted with a public key system.

I.e., to encrypt a message m to send to Bob:

▶ Choose a random session key k for a symmetric key system
(e.g., AES)

▶ Encrypt k with Bob’s public key — Result ke
▶ Encrypt m with k — Result me

▶ Send ke and me to Bob

How does Bob decrypt? Why is this efficient?

19 / 49



Combining symmetric and public key systems

Problem: Public key systems are slower in practice than symmetric
key systems.

Solution: Use a symmetric key system for large messages.
For each such symmetric key system session, create a new key for
it and start by sending this key encrypted with a public key system.

I.e., to encrypt a message m to send to Bob:

▶ Choose a random session key k for a symmetric key system
(e.g., AES)

▶ Encrypt k with Bob’s public key — Result ke
▶ Encrypt m with k — Result me

▶ Send ke and me to Bob

How does Bob decrypt? Why is this efficient?

19 / 49



Combining symmetric and public key systems

Problem: Public key systems are slower in practice than symmetric
key systems.

Solution: Use a symmetric key system for large messages.
For each such symmetric key system session, create a new key for
it and start by sending this key encrypted with a public key system.

I.e., to encrypt a message m to send to Bob:

▶ Choose a random session key k for a symmetric key system
(e.g., AES)

▶ Encrypt k with Bob’s public key — Result ke
▶ Encrypt m with k — Result me

▶ Send ke and me to Bob

How does Bob decrypt? Why is this efficient?

19 / 49



Security of RSA

The primes p and q are kept secret along with d .

Suppose Eve can factor N.

Then she can find p and q (as these are the factors of N). From
them and e, she can find d (using the same method as Alice, to be
described later).

Then she can decrypt just like Alice!

So factoring must be hard, or RSA will be insecure (here, hard
means very time-consuming).

Also, N must be sufficiently big to use hardness of factoring.
Current recommendations are to choose p and q with at least 1024
bits each, making N = p · q have at least 2048 bits.
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Factoring (naive approach)

Theorem N composite ⇒ N has a prime divisor ≤
√
N

Factor(N)

for i = 2 to
√
N

check if i divides N
if it does then output divisor i and stop

output “Prime” if divisor not found

Corollary There is an algorithm for factoring N (or verifying

primality) which does O(
√
N) tests of divisibility.
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Complexity of factoring

Assume that we use primes which are at least 1024 bits long (the
current recommendation for RSA). The naive approach does up to√
N =

√
22048 = (22048)1/2 = 22048/2 = 21024 = (10log10 2)1024

= (100.301...)1024 = (101024·0.301...) > 10308 tests of divisibility.

This is 10291 years of CPU time (assuming 109 tests per second).
Even having one CPU per human available, this would take more
than 10281 years (while the universe is only around 1010 years old).

The input length in bits is n = log2(N). So the running time above
is O(

√
N) = O(

√
2n) = O((2n)1/2) = O(2n/2) = O((21/2)n) =

O((
√
2)n) = O((1.4142 . . . )n). This is exponential in n.

Open Problem: Does there exist a factoring algorithm with
running time polynomial in n?

(Note: if large enough quantum computers can be built, the
answer is yes [Peter Shor, 1994].)
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RSA, implementation details

How do we implement RSA?

▶ We need to find p, q

▶ We need to find e, d

▶ To encrypt and decrypt, we need to compute ak (mod n) for
large a, k , and n

We will now discuss how this is done (going backwards through the
list of tasks).
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RSA — encryption/decryption, space usage

Computing ak (mod n):

e · d ≡ 1 (mod (p − 1)(q − 1)).
p and q have ≥ 1024 bits each (using current recommendations).
So at least one of e and d has ≥ 1024 bits.

We want to compute ak (mod n) for a = m, n = N and k = d , e.
The message m usually has the same number of bits as N = p · q,
which is at least 2048 bits.

Hence, we are dealing with a value of ak on the order of (22048)2
1024

which has log2((2
2048)2

1024
) = 21024 log2(2

2048) = 21024 · 2048 bits,
which is more than 10311 bits. This number cannot be stored even
if using all the RAM existing in the world.
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Keeping sizes of numbers down

Theorem [From DM549]

For all nonnegative integers, b, c ,m:

b · c (mod n) = (b (mod n)) · (c (mod n)) (mod n)

Example: a · a2 (mod n) = (a (mod n))(a2 (mod n)) (mod n).

This allows us to take (mod n) after every multiplication without
changing the result. This will ensure that all numbers dealt with
have approximately the same number of bits as n (e.g., 2048 bits).

Space (RAM) problem solved.

A multiplication followed by (mod n) is called a modular
multiplication.
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RSA — encryption/decryption, time usage

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) = a · a (mod n): 1 modular multiplication
a3 (mod n) = a · (a · a (mod n)) (mod n): 2 mod mults
...
ak (mod n) : k − 1 modular multiplications.

This is way too many:

e · d ≡ 1 (mod (p − 1)(q − 1)).
p and q have ≥ 1024 bits each (using current recommendations).
So at least one of e and d has ≥ 1024 bits, and we have k = d
and k = e.

To either encrypt or decrypt would need ≥ 21024 − 1 ≈ 10308

operations. Much more time than the age of the universe.
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Keeping time down

We need to encrypt and decrypt: compute ak (mod n).

a2 (mod n) = a · a (mod n) — 1 modular multiplication
a3 (mod n) = a · (a · a (mod n)) (mod n) — 2 mod mults

How do you calculate a4 (mod n) in less than 3 mod mults?

Observation:
a4 (mod n) = (a2 (mod n))2 (mod n) — 2 mod mults

In general: a2s (mod n)?

a2s (mod n) = (as (mod n))2 (mod n)

In general: a2s+1 (mod n)?

a2s+1 (mod n) = a · (a2s (mod n)) (mod n)
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Modular Exponentiation

Resulting algorithm:

Exp(a, k , n) { Compute ak (mod n) }

if k < 0 then report error
if k = 0 then return(1)
if k = 1 then return(a (mod n))
if k is odd then return(a·Exp(a, k − 1, n) (mod n))
if k is even then

c = Exp(a, k/2, n)
return((c · c) (mod n))

How many modular multiplications?

We divide exponent by 2 every other time. How many times can
we do that? ⌊log2(k)⌋.

So at most 2⌊log2(k)⌋ modular multiplications in total. Time
problem solved, since 2⌊log2(k)⌋ ≈ 2 log2(2

1024) = 2 ·1024 = 2048.
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Finding e and d

We need to find: e, d .
gcd(e, (p − 1)(q − 1)) = 1.
e · d ≡ 1 (mod (p − 1)(q − 1)).

Choose random e.
Check that gcd(e, (p − 1)(q − 1)) = 1. If not, repeat.

Find d such that e · d ≡ 1 (mod (p − 1)(q − 1)).
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Finding multiplicative inverses modulo n

Finding multiplicative inverses modulo n:

Given e and n, find d such that e · d ≡ 1 (mod n).

Solved if we can find s and t fulfilling s · e + t · n = 1 (we can then
use s as our d).

This can be done via the Extended Euclidean Algorithm if
gcd(e, n) = 1.

The Euclidean Algorithm finds gcd(a, b) for positive integers a and
b.

The Extended Euclidean Algorithm also finds integers s and t such
that s · a+ t · b = gcd(a, b).

The (Extended) Euclidean Algorithm is fast: it runs in time
log(max(a, b)) [Lamé, 1844].
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The extended Euclidean algorithm (two-pass)

Euclidean algorithm by example: Find gcd(75, 42)

d0 = 75
d1 = 42 (75 = 1 · 42 + 33)
d2 = 33 (42 = 1 · 33 + 9)
d3 = 9 (33 = 3 · 9 + 6)
d4 = 6 (9 = 1 · 6 + 3)
d5 = 3 (6 = 2 · 3 + 0)
d6 = 0 Stop and return previous d (here d5) as gcd.

Extension: Find s and t using the equations from bottom to top:

gcd(75, 42) = 3

= 9− 6 = 9− (33− 3 · 9) = −33 + 4 · 9
= −33 + 4 · (42− 33) = 4 · 42− 5 · 33 = 4 · 42− 5 · (75− 42)

= −5 · 75 + 9 · 42 = s · 75 + t · 42
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The extended Euclidean algorithm (single pass)

{ Initialize}
d0 = b s0 = 0 t0 = 1
d1 = a s1 = 1 t1 = 0
i = 1

{ Compute next d}
while di > 0 do

begin
i = i + 1
{ Compute di = di−2 (mod di−1)}
qi = ⌊di−2/di−1⌋
di = di−2 − qidi−1

si = si−2 − qi si−1

ti = ti−2 − qi ti−1

end

return: gcd(b, a) = di−1, s = si−1, t = ti−1
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The extended Euclidean algorithm (single pass)

The single pass algorithm maintains the following invariant (from
which correctness of s and t follows):

di = sia+ tib

This invariant is proved by induction on i :

Initialization (i = 0, i = 1):

d0 = b = 0 · a+ 1 · b = s0a+ t0b

d1 = a = 1 · a+ 0 · b = s1a+ t1b

Step (i ≥ 2):

di = di−2 − qidi−1 = (si−2a+ ti−2b)− qi (si−1a+ ti−1b)

= (si−2 − qi si−1)a+ (ti−2 − qi ti−1)b = sia+ tib
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Examples

Calculate the following:

1. gcd(6, 9)

2. s and t such that s · 6 + t · 9 = gcd(6, 9)

3. gcd(15, 23)

4. s and t such that s · 15 + t · 23 = gcd(15, 23)
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Primality testing

We also need to find the large primes p, q.

Plan: Choose numbers at random and check if they are prime.
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Questions

1. How many random integers with 1024 bits are prime?

Prime Number Theorem: about x
ln x numbers < x are prime

In our situation we have x = 21024. As ln 21024 = 1024 · ln 2 ≈ 710,
the average distance between primes with (up to) 1024 bits is
around 710.

Hence, we can expect to test about 710 random numbers with
1024 bits before finding a prime number.

(This holds because if the probability of “success” is p, the
expected number of tries until the first “success” is 1/p.)

2. How fast can we test if a number is prime?

Quite fast, it turns out (in practice using randomness). See the
following pages.
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Suggestion 1

Sieve of Eratosthenes:
Lists:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3 5 7 9 11 13 15 17 19
5 7 11 13 17 19

7 11 13 17 19

We need to go up to 21024 = 10308 — more than the number of
atoms in universe.

So we cannot even write out the first list in the sieve of
Eratosthenes. Not practical.
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Suggestion 2

Use our naive factoring algorithm:

CheckPrime(n)

for i = 2 to
√
n do

check if i divides n
if it does then return(Composite)

return(Prime)

As we saw earlier, this takes much more time than the age of the
universe. Not practical.
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Rabin–Miller Primality Testing

This is a practical, randomized primality test.

Starting point:

Fermat’s Little Theorem: Suppose n is a prime. Then for all
1 ≤ a ≤ n − 1, an−1 (mod n) = 1.

A Fermat test based on a = 2:

214 (mod 15) ≡ 4 ̸= 1.
So 15 is not prime.

We say that 2 is a Fermat witness that 15 is composite.
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Rabin–Miller Primality Test

First attempt: repeat Fermat test with many a’s:

Prime(n)

repeat k times
Choose random a with 1 ≤ a ≤ n − 1
if an−1 (mod n) ̸≡ 1 then return(Composite)

return(Probably Prime)

Unfortunately not efficient on all numbers. E.g. not on Carmichael
Numbers: a composite n, where for all a with 1 ≤ a ≤ n − 1 and a
relatively prime to n, we have an−1 (mod n) ≡ 1. Example of a
Carmichael number: 561 = 3 · 11 · 17

Add to the picture this Theorem:
If n is prime, then x2 (mod n) ≡ 1 implies x (mod n) ∈ {1, n − 1}.
If n is composite, odd, and has two distinct factors, then
x2 (mod n) ≡ 1 implies at least four values possible for x (mod n).

Example: x2 (mod 15) ≡ 1 ⇒ x ∈ {1, 4, 11, 14}
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Rabin–Miller Primality Test
Idea: Start with Fermat test for some a. Then “take square roots
of 1 (mod n)” as long as we have an x with x2 (mod n) ≡ 1.

Example with n = 561 and a = 50:

50560 (mod 561) ≡ 1 [i.e., (50280)2 (mod 561) ≡ 1 (so x = 50280)]
50280 (mod 561) ≡ 1 [i.e., (50140)2 (mod 561) ≡ 1 (so x = 50140)]

50140 (mod 561) ≡ 1
...

5070 (mod 561) ≡ 1
5035 (mod 561) ≡ 560 [Process stops (35 is odd and 560 ̸= 1).]

If n is prime, we can only end in ≡ 1 or ≡ n− 1 (for all a). Above,
this also happened for the composite n = 561 when a = 50.
Let’s now try a = 2:

2560 (mod 561) ≡ 1
2280 (mod 561) ≡ 1
2140 (mod 561) ≡ 67 [Not just 1 or n − 1. Busted!]

We say that 2 is a Rabin–Miller witness that 561 is composite.
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Rabin–Miller Primality Test

Resulting algorithm:

Miller–Rabin(n, k)

Calculate odd m such that n − 1 = 2s ·m
repeat k times

Choose random a with 1 ≤ a ≤ n − 1
if an−1 (mod n) ̸≡ 1 then return(Composite)

if a(n−1)/2 (mod n) ≡ n − 1 then continue [⇒ next iteration]

if a(n−1)/2 (mod n) ̸≡ 1 then return(Composite)

if a(n−1)/4 (mod n) ≡ n − 1 then continue [⇒ next iteration]

if a(n−1)/4 (mod n) ̸≡ 1 then return(Composite)
...

if am (mod n) ≡ n − 1 then continue [⇒ next iteration]
if am (mod n) ̸≡ 1 then return(Composite)

end repeat
return(Probably Prime)
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Rabin–Miller Primality Test

Theorem: If n is composite and odd, at most 1/4 of the a’s with
1 ≤ a ≤ n − 1 will not end in “return(Composite)” during an
iteration of the repeat-loop.

This means that with k iterations, a composite odd n will survive
to return(Probably Prime) (making the algorithm return a wrong
answer) with probability at most (1/4)k . Otherwise, the algorithm
returns the correct answer “Composite”. Even numbers are always
composite, so we don’t need to test them.

For e.g. k = 100, the probability of a wrong answer is therefore
less than (1/4)100 = 1/2200 < 1/1060.

A prime n will always survive to “return(Probably Prime)”, which
is the correct answer.
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Conclusions about primality testing

1. Miller–Rabin is a practical, randomized primality test

2. In 2002, a deterministic primality test was given [Agrawal,
Kayal, Saxena]. It is less practical, though.

3. Randomized algorithms may be prefered over deterministic
ones, even if they (with very low probability) can make errors.

4. Number theory has practical uses.
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Why does RSA work?

Ingredient 1:

Thm (The Chinese Remainder Theorem) Let n1, n2, ..., nk be
pairwise relatively prime. For any integers x1, x2, ..., xk , there exists
x ∈ ZZ s.t. x ≡ xi (mod ni ) for 1 ≤ i ≤ k. Also, x is uniquely
determined modulo the product N = n1n2...nk : If x

′ ∈ ZZ s.t.
x ≡ xi (mod ni ) for 1 ≤ i ≤ k , then x ≡ x ′ (mod N).

We for RSA consider the special case where n1 = p and n2 = q are
two primes (hence N = pq), and where x1 = x2 = m.

Clearly, m ≡ m (mod p) and m ≡ m (mod q) for any m. So if x
fulfills x ≡ m (mod p) and x ≡ m (mod q), then x ≡ m (mod N).

In particular, if 0 ≤ x ,m ≤ N − 1, then we must have x = m.
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Why does RSA work?

Ingredient 2:

Fermat’s Little Theorem: If p is a prime, p ̸ |a, then

ap−1 ≡ 1 (mod p) and ap ≡ a (mod p)
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RSA

Recap:

N = p · q, where p, q prime.
gcd(e, (p − 1)(q − 1)) = 1.
e · d ≡ 1 (mod (p − 1)(q − 1)).

▶ PK = (N, e)

▶ SK = (N, d)

To encrypt: c = E (m,PK ) = me (mod N).
To decrypt: r = D(c ,PK ) = cd (mod N).

We now show correctness of RSA, i.e., that r = m.
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Correctness of RSA

Let x = D(E (m,PK ), SK ). Then
x = (me (mod N))d (mod N) = med (mod N).

Recall that ∃k s.t. ed = 1 + k(p − 1)(q − 1).

If p ̸ |m then by Fermat’s little theorem:

med ≡ m1+k(p−1)(q−1) ≡ m · (m(p−1))k(q−1) ≡ m · 1k(q−1) ≡
m (mod p).

Similarly, if q ̸ |m:

med ≡ m1+k(p−1)(q−1) ≡ m · (m(q−1))k(p−1) ≡ m · 1k(p−1) ≡
m (mod q).

From the Chinese Remainder Theorem: med ≡ m (mod N).
Hence, x = med (mod N) = m (mod N) = m, where the last
equality holds if 0 ≤ m < N (which we require in RSA).
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Correctness of RSA

For the remaining cases: assume p|m

Then m = pk for some k , so for any t we have mt = (pk)t = pk ′

for some k ′.

Hence, med ≡ 0 ≡ m (mod p).

If q|m, we can similarly show med ≡ 0 ≡ m (mod q).

Thus, in all cases, med ≡ m (mod p) and med ≡ m (mod q), so
the Chinese Remainder Theorem gives that med ≡ m (mod N) and
the argument at the bottom of the previous slide holds.
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