# DM573 <br> Introduction to Computer Science Exercises on Satisfiability 

Peter Schneider-Kamp<br>petersk@imada.sdu.dk<br>http://imada.sdu.dk/~petersk/

## PART I

## Exercise I-1: Check Satisfiability

Which of the following formulas are satisfiable (give a satisfying assignment)? Which are not (give reasons)?
Note: in all exercises, logical negation (NOT) is denoted by "-".
a) $A \wedge B$
b) $A \vee B$
c) $A \rightarrow B$
d) $A \wedge-A$
e) $A \vee-A$

## Exercise I-2: Equivalent Formulas

Two formulas are equivalent, if the same assignments satisfy both of them.

Which of the following formulas are equivalent?
a) $-A \wedge B$
b) $-\mathrm{A} \vee \mathrm{B}$
c) $A \rightarrow B$
d) $(A \rightarrow B) \wedge(-B \rightarrow A)$
e) $(-A \rightarrow B) \wedge(-B \rightarrow-A)$

## Exercise I-3: Convert to CNF

Convert the following formulas into CNF:
a) $-A \wedge B$
b) $-\mathrm{A} \vee \mathrm{B}$
c) $A \rightarrow B$
d) $(A \rightarrow B) \wedge(-B \rightarrow A)$

## Exercise I-4: Breaking Symmetry

Solutions to N -Towers and N -Queens are symmetric:


Write two clauses that forbid solutions where there is a queen in the right half of the first row.

$$
\begin{array}{|l|l|l|l}
\hline x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
\hline x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
\hline x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
\hline x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}
$$

## Exercise I-5: Preparation

- Install lingeling or another compatible SAT solver
- Alternatively, use a Javascript SAT solver, e.g.:
- https://www.msoos.org/2013/09/minisat-in-your-browser/
- Test it using the following input (also available on the course web page as the file towers $2 \times 2 . \mathrm{cnf}$ )

```
p cnf 4
6
-1 -2 0
-1 -3 0
-2 -4 0
-3 -4 0
120
340
```


## Exercise I-6: Removing Redundancies

The formula from page II on Peter's slides contains redundant information. For example, $X_{1,1} \rightarrow-X_{1,2}$ and $X_{1,2} \rightarrow-X_{1,1}$ are equivalent. Understand and remove these redundancies:
a) Why do these redundancies occur?
b) Identify all such redundancies!
c) Write down a simplified formula without redundancies!
d) Convert the simplified formula into CNF!
e) Write the formula in DIMACS format!
f) Run the lingeling or another SAT solver on it and interpret the result!

## PART II

## Exercise II-1: Check Satisfiability

Which of the following formulas are satisfiable (give a satisfying assignment)? Which are not (give reasons)?
a) $(A \rightarrow B) \wedge(B \rightarrow A)$
b) $(A \rightarrow B) \wedge(B \rightarrow A) \wedge A$
c) $(A \rightarrow B) \wedge(B \rightarrow A) \wedge-A$
d) $(A \rightarrow B) \wedge(B \rightarrow-A) \wedge(-A \rightarrow-B) \wedge(-B \rightarrow A)$

## Exercise II-2: Equivalent Formulas

Two formulas are equivalent, if the same assignments satisfy both of them.
Which of the following formulas are equivalent?
a) $(A \rightarrow B) \wedge(-B \rightarrow A)$
b) $(A \rightarrow-B) \wedge(B \rightarrow A)$
c) $(-A \vee-B) \wedge(A \vee-B)$
d) $(B \vee A) \wedge(-A \vee B)$

## Exercise II-3: Convert to CNF

Convert the following formulas into CNF:
a) $(-A \rightarrow B) \wedge(-B \rightarrow-A)$
b) $A \rightarrow(-(B \wedge D))$
c) $A \rightarrow(-(B \vee D))$
d) $A \rightarrow(-(B \rightarrow(C \wedge D)))$

## Exercise II-4: 3-Towers

Write a Python program that generates the input for a SAT solver to solve the 3 -Towers problem:
a) Write a function pair2int ( $r, c$ ) which maps $(1,1),(1,2), \ldots,(3,3)$ to 1 to 9

$$
\begin{array}{|l|l|l|}
\hline x_{1,1} & x_{1,2} & x_{1,3} \\
\hline x_{2,1} & x_{2,2} & x_{2,3} \\
\hline x_{3,1} & x_{3,2} & x_{3,3} \\
\hline
\end{array}
$$ using the formula $3^{*}(r-1)+c$.

b) Write nested for-loops that go through all positions on the board from $(1,1)$ to $(3,3)$ and produces clauses that represent attacks.
c) Write a for-loop that produces clauses that specify that all 3 rows contain a tower.
d) Using (a)-(c), write a DIMACS file and test it using lingeling or another SAT solver.

## Exercise II-5: N-Towers

Generalize your Python program from Exercise II-4 to generate the input for a SAT solver to solve the N -Towers problem:
a) Write a function pair2int ( $n, r, c$ ) which maps pairs $(r, c)$ to the integers 1 to $n^{2}$ using the formula $\mathrm{n}^{*}(\mathrm{r}-1)+\mathrm{C}$.
b) Write nested for-loops that go through all positions on the board from $(1,1)$ to ( $\mathrm{n}, \mathrm{n}$ )
and produces clauses that represent attacks.
c) Write a for-loop that produces clauses that specify that all rows contain a tower.
d) Using (a)-(c), write a DIMACS file and test it using lingeling or another SAT solver.

| $X_{1,1}$ | $X_{1,2}$ | $X_{1,3}$ |
| :---: | :---: | :---: |
| $X_{2,1}$ | $X_{2,2}$ | $X_{2,3}$ |
| $X_{3,1}$ | $X_{3,2}$ | $X_{3,3}$ |
|  |  |  |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

## Exercise II-6: N-Queens

Extend your Python program from Exercise II-5 to generate the input for a SAT solver to solve the N -Queens problem:
a) Reuse your function pair2int $(n, r, c)$ from Exercise II-5.
b) Adapt your for-loops from Exercise II-5 to produce also clauses for the diagonals.
c) Reuse the for-loop from Exercise II-5 that produces clauses that specify that all rows contain a tower.
d) Using (a)-(c), write a DIMACS file and test it using lingeling or another SAT solver.

| $X_{1,1}$ | $X_{1,2}$ | $X_{1,3}$ |
| :---: | :---: | :---: |
| $X_{2,1}$ | $X_{2,2}$ | $X_{2,3}$ |
| $X_{3,1}$ | $X_{3,2}$ | $X_{3,3}$ |
|  |  |  |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

