Eksaminatorier DM573 Uge 46/47

Husk at læse de relevante sider i slides før du/I forsøger at løse en opgave.

I: Løses i løbet af øvelsestimerne i uge 46

Start med at repetere følgende definitioner fra slides:

- En Deterministic Finite Automaton (DFA).
- At en DFA accepterer en streng.
- Sproget bestemt af en DFA.
- En Context-Free Grammar (CFG).
- At en CFG udleder (derives) en streng.
- Sproget bestemt af en CFG.

Lav derefter opgave 1-8 på de næste sider.

II: Løses hjemme inden øvelsestimerne i uge 47

Lav opgave 9-11 på de følgende sider.

Exercise 1

- What is the language of the following DFA?

Exercise 2

- What is the language of the following DFA?

Exercise 3

- Define a DFA that recognises the following language:
- All strings of 0 s and 1 s that contain an odd number of 1 s and any number of 0 s .

Exercise 4

- Define a DFA that recognises the following language:
- All strings of 0 s and 1 s that contain the string 010.

Exercise 5

- Define a DFA that recognises the following language:
- All strings of 0s and 1 s that contain at least two occurrences of 10 and an even number of 0 s .

Exercise 6

- What is the language of the following CFG?

$$
\begin{aligned}
& S \rightarrow \mathrm{ab} \\
& \mathrm{~S} \rightarrow \mathrm{SS}
\end{aligned}
$$

Exercise 7

- Write two different derivations for the string 0001111 with the following CFG. (Same end result, but some different intermediate steps.)

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{M} 1 \\
& \mathrm{M} \rightarrow \mathrm{M} 1 \\
& \mathrm{M} \rightarrow 0 \mathrm{M} \\
& \mathrm{M} \rightarrow 0 \\
& \mathrm{M} \rightarrow 1
\end{aligned}
$$

Exercise 8

- What is the language of the following CFG?

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{MM} 1 \\
& \mathrm{M} \rightarrow 0 \mathrm{M} \\
& \mathrm{M} \rightarrow 1 \mathrm{M} \\
& \mathrm{M} \rightarrow 0 \\
& \mathrm{M} \rightarrow 1
\end{aligned}
$$

Exercise 9

- Define a CFG that recognises the following language:
- All strings of 0 s and 1 s consisting of n 0 s followed by n 1 s .
- Examples: 0011 is $\mathrm{OK}, 1100$ is not $\mathrm{OK}, 011$ is not OK.

Exercise 10

- Define a DFA that recognises the same language of this CFG:

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{M} \\
& \mathrm{~S} \rightarrow 1 \\
& \mathrm{M} \rightarrow 0 \mathrm{~S} \\
& \mathrm{M} \rightarrow 1 \mathrm{~T} \\
& \mathrm{~T} \rightarrow 0 \mathrm{M} \\
& \mathrm{~T} \rightarrow 1 \mathrm{~T}
\end{aligned}
$$

Exercise 11

- Define a CFG that recognises the following language:
- All strings of arithmetic additions that contain numbers, the + sign, and (balanced) parentheses.
- Examples: $(0+1)$ is $\mathrm{OK},(2+(3))+4$ is $\mathrm{OK}, 2+3(2)$ is not OK .

