
Institut for Matematik og Datalogi 3. december 2023
Syddansk Universitet, Odense KSL/RF

Eksaminatorier DM573 Uge 49/50

Husk at læse de relevante sider i slides før du/I forsøger at løse en opgave.

I: Løses i løbet af øvelsestimerne i uge 49

1. Prove that no matter which other algorithm than the one from the
lecture notes we define for ski rental, the algorithm will perform worse,
i.e., the competitive ratio will be strictly higher than 19

10 .

Start by analyzing the algorithms “Buy on day 5” and “Buy on day
15” to see what happens. The skis still cost 10 units to buy and 1 unit
per day to rent.

2. For m = 3, which schedule does the List Scheduling algorithm, Ls,
produce on the following input sequence:

1
2

1

4
3

2

3. In the lecture, we proved that the machine scheduling algorithm, Ls,
could not perform better than 2− 1

m . We now consider only two ma-
chines. Thus, m = 2, and the ratio is then 3

2 . Just because Ls cannot
perform better, it could be that some other algorithm could. Prove
(for m = 2) that this is not the case. You must design an input, where
no algorithm, no matter what decisions it makes, can do better than
3
2 times Opt. You only need sequences with two and three jobs and
a case analysis with only two cases, depending on what an algorithm
does with the second job that is given.



4. Consider the first bin packing example given in the lecture (slide 19),
where the First-Fit algorithm, Ff, uses four bins. Show that Opt only
needs three.

5. How does the First-Fit algorithm, Ff, behave on the input sequence
below? Item sizes are given in multiples of 1

6 .

1

4
3

4
3

1

6. Why can the following configuration not have been produced by the
bin packing algorithm Ff? Item size are given in multiples of 1

9 .

3

5

3

4

2

3

II: Løses hjemme inden øvelsestimerne i uge 50

1. For bin packing, one can prove the upper bound that Ff is 1.7-
competitive. However, this is a quite hard proof. In this exercise, we
will try to improve (raise) the lower bound.

In the lecture, we saw an example demonstrating that Ff can be as
bad as 3

2 = 1.5 times Opt.

Let that example inspire you, and try to use items of the following
three sizes:

1

7
+

1

1000
,

1

3
+

1

1000
,

1

2
+

1

1000

Find a sequence where Ff performs 5
3 times worse than Opt.

Now try using

1

43
+

1

10000
,

1

7
+

1

10000
,

1

3
+

1

10000
,

1

2
+

1

10000

2



to get a lower bound close to the 1.7 upper bound.

2. It is very easy to implement Ff in Python, if there are no efficiency
requirements: just use a list to hold the current level in the bins, and for
each item, search for the first bin with enough space. If you make sure
there are enough bins from the beginning, then there are no special
cases. And you simple count the number of non-empty bins at the end
to get the result.

Implement Ff.

Try to define your own algorithm, from scratch or as a variant of Ff.

Test your own algorithm up against Ff and try to determine which
one is best; for instance on uniformly distributed sequences, i.e., each
item size is chosen like this:

from random import seed, random

seed(42)

.

.

item = random()

nextitem = random()

.

.

You don’t have to use seed; the intention is simply to provide a repro-
ducible random sequence, i.e., seed is called once and the seed value
initializes the sequence.

3


