DM534

Introduction to Computer Science
Lecture on Satisfiability

Peter Schneider-Kamp
petersk@imada.sdu.dk
http://imada.sdu.dk/~petersk/

”O’UNIVERSITY OF SOUTHERN DENMARK.DK


mailto:petersk@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM850/

THE SAT PROBLEM




DM549: Propositional Variables

= Variable that can be either false or true
= Set P of propositional variables

= Example:
P — {A181C1D1X1 Y’ Z’ Xl’ XZ’ X3’ }

= A variable assignment is an assignment of the values false
and true to all variables in P

= Example:
X =true
Y = false
Z = true

".’UNIVERSITY OF SOUTHERN DENMARK.DK



DM549: Propositional Formulas

* Propositional formulas
= If X in P, then X is a formula.
* If Fis a formula, then —F is a formula.
= If F and G are formulas, then F A G is a formula.
* If F and G are formulas, then F vV G is a formula.

= |f F and G are formulas, then F =» G is a formula.
= Example: (X =2 (Y A=2))

* Propositional variables or negated propositional variables are
called literals

= Example: X,—X

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Which formulas are satisfiable?

- X
- —X

= XA=X
= X A=X
- Xv-=X
- XD X,
- =X,V X,

”O’UNIVERSITY OF SOUTHERN DENMARK.DK



Satisfiability

* Variable assignment V satisfies formulas as follows:
= V satisfies X in P iff V assigns X = true
= V satisfies —F iff V does not satisfy F
= V satisfies FA G iff V satisfies both F and G
= V satisfies FV G iff V satisfies at least one of F and G
= V satisfies F =» G iff V does not satisfy F or V satisfies G

= A propositional formula F is satisfiable iff there
is a variable assignment V such that V satisfies F.

= The Satisfiability Problem of Propositional Logic (SAT):

= Given a formula F, decide whether it is satisfiable.

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Modelling Problems by SAT

= propositional variables are basically bits
= model your problem by bits
* model the relation of the bits by a propositional formula

= solve the SAT problem to solve your problem

'!:UNIVERSITY OF SOUTHERN DENMARK.DK



N-TOWERS & N-QUEENS




N-Towers & N-Queens

= N-Towers

* How to place N towers on an NXN chessboard such that

they do not attack each other?

= (Towers attack horizontally and vertically.) !

* N-Queens (restriction of N-Towers)

* How to place N queens on an NXN chessboard such that
they do not attack each other?

* (Queens attack like towers + diagonally.) <

Q

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Modeling by Propositional Variables

Model NXN chessboard by NXN propositional variables X;;

= Semantics: X;;is true iff there is a figure at row I, column |

= Example: 4x4 chessboard Xig K Xz Xig

= Example solution:
) xl’z = X2,4 = X3,1 - X4,3 = frue
= X;;=false for all other X;;

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Reducing the Problem to SAT

* Encode the properties of N-Towers to propositional formulas

= Example: 2-Towers

X112 X, “Tower at (I1,1) attacks to the right”

X112 X5, “Tower at (1,1) attacks downwards” Xig K2
X122 X1 “Tower at (1,2) attacks to the left”

X122 =X, “Tower at (1,2) attacks downwards” Xon K22
Xy P =X, “Tower at (2,1) attacks to the right”

Xy X1 “Tower at (2,1) attacks upwards”

Xoo =P =X, “Tower at (2,2) attacks to the left”

Xoo P =Xy, “Tower at (2,2) attacks upwards”

X11V X, “Tower in first row”

Xo1V Xy, “Tower in second row”

* Form a conjunction of all encoded properties:

(X1 XD AKX D =X ) AKXy =X ) AKXy = Xo0) AKXy =2 =X 1) AKXy,
> —Xo0) A (Ko P =X ) AXKpo P =Xp0) AXp1 VX)) A(Xpp V Xy 0)

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Solving the Problem

= Determine satisfiability of

(X1 X)) AXKpg D =X ) AKXy =X ) AKX =D =X0) AXy =2 =X 1) A
(Xo1 =P = X50) A(Xpp D =Xo) A(XKpp P =X ) AXp 1 VX)) A(Xy1 VXy5)

= Satisfying variable assignment (others are possible):
= X11=X,,=1rue
= Xi,=X,, =false

(true =» —false) A (true = —false) A (false = —true) A (false = —true) A (false = —true) A
(false = —true) A (true =» —false) A (true = —false) A (true v false) A (false v true)

(true = true) A (true = true) A (false =» —true) A (false =» —true) A (false =» —true) A (false
= —true) A (true =» true) A (true = true) A (true Vv false) A (false v true)

true A true A true A true A true A true A true A true A true A true

true

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



SAT Solving is Hard

= Given an assignment, it is easy to test whether it satisfies our
formula

= BUT: there are many possible assignments!
= for m variables, there are 2™ possible assigthments @

= SAT problem is a prototypical hard problem (NP-complete)

'!:UNIVERSITY OF SOUTHERN DENMARK.DK



USING A SAT SOLVER




SAT Solvers

= SAT solver = program that determines satisfiability

= Plethora of SAT solvers available

= For the best, visit http://www.satcompetition.org/

= Different SAT solvers optimized for different problems

" One reasonable choice is the SAT solver 1ingeling
* Very good overall performance at SAT Competition 2016
= Parallelized versions available: p1ingeling, treengeling

= Available from: nttp://fmv.jku.at/lingeling/

',G'UNIVERSITY OF SOUTHERN DENMARK.DK


http://www.satcompetition.org/
http://fmv.jku.at/lingeling/

Conjunctive Normal Form (CNF)

= Nearly all SAT solvers require formulas in CNF
= CNF = conjunction of disjunctions of literals

= Example: 2-Towers
(X1 XD AKX D =X ) AKXy X)) AKXy —Xo0) AKXy =2 =X 1) AKXy,
> Xo0) A (Ko P =X ) AXKpo P =Xo0) AKXy VX)) A(Xpp V Xy 0)

= Conversion easy: A=>» B convertedto -AV B
(X1 V=X ) A (XL V=X ) A (X o V=X ) A(X o V=Xo0) A(Xp 1 V=X ) A (=Xp,
V=X32) A(=Xp0 V=X ) A(=X5,V=X51) A(Xp 1 VX)) A(Xpq VX5 0)

* Write formulas in CNF as a list of clauses (= lists of literals)

= Example:
[[_Xl,l’ _Xl,z]a[_xl,ls _X2,1]s[_Xl,Z’_Xl,l]s[_Xl,Z’_XZ,Z]v[_xz,li_xl,l]s[_x2,1’_x2,2]’[_XZ,Z’_Xl,Z]v
[_Xz,zs_xz,l],[X1,11X1,2],[Xz,l’xz,z]]

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Conversion to CNF

= |mplications can be replaced by disjunction:
" F=> G convertedto -FVG

= DeMorgan's rules specify how to move negation “inwards””:
" (FAG)=-FV-G
" (FVG)=-FA-G

Double negations can be eliminated:
M _(_F) = F

= Conjunction can be distributed over disjunction:
* FV(GAH)=(FVG)A(FVH)

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Variable Enumeration

SAT solvers expect variables to be identified with integers

Starting from 1 and up to the number of variables used
* Necessary to map modeling variables to integer!

= Example: 4X4 chessboard
" X;; becomes 4*(i-1)+]

X112 Xip Xiz Xig 1 2 3 4
Xo1 Xpp Xoz Xy 5 6 7 8
Xa1 Xzo Xaz Xy 9 10 11 12
Xo1 Xao Xaz Xag 13 14 15 16

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



(Simplified) DIMACS Format

= Description of DIMACS format for CNF (BB: dimacs.pdf)

Simplified format (subset) implemented by most SAT solvers:
* http://www.satcompetition.org/2016/format-benchmarks2016.html

= 2 types of lines for input

= Starting with “c ”: comment

= Starting with “p problem
= 3 types of lines for output

= Starting with “c ”: comment

= Starting with“s ”: solution

,

= Starting with “v variable assighment

',G'UNIVERSITY OF SOUTHERN DENMARK.DK


http://www.satcompetition.org/2009/format-benchmarks2009.html

Input Format 1/2

= Comments
= Anything in a line starting with “c “ is ignored

= Example:

c This file contains a SAT encoding of the 4-queens problem!

c The board is represented by 4x4 variables:

c 1 2 3 4
C 5 6 7 8
c 9 10 11 12
c 13 14 15 16
c

”O’UNIVERSITY OF SOUTHERN DENMARK.DK



Input Format 2/2

* Problem
= Starts with“p cnf #variables #clauses”

* Then one clause per line where
" Variables are numbered from 1 to #variables
= Clauses/lines are terminated by O
" Positive literals are just numbers

= Negative literals are negated numbers

= Example:
p cnf 16 80
-1 -2 0

-15 -16 O
1 2 3 40

13 14 15 16 0O

".’UNIVERSITY OF SOUTHERN DENMARK.DK



Output Format 1/2

= Comments
= just like for the input format

= Example:

c reading input file examples/4-queens.cnf

= Solution
= Starts with “s
* Then either “SATISFIABLE” or “UNSATISFIABRLE”

(13

= Example:
s SATISFIABLE

".’UNIVERSITY OF SOUTHERN DENMARK.DK



Output Format 2/2

= Variable assighment
= Starts with “v “
= Then list of literals that are assigned to true

= “1” means variable 1 is assigned to true

= “-~2” means variable 2 is assigned to false

= Terminated by “0”

= Example:
v-12-3-4-5-6-789 -10 -11 -12 -13 -14 15 -16 O

1 2 3 4 false true false false Q

5 6 7 8 false false false true Q
9 10 11 12 true false false false

13 14 15 16 false false true false Q

Q

".’UNIVERSITY OF SOUTHERN DENMARK.DK



Running the SAT Solver

Save the comment and problem lines into .cnf file.

.

2. Invoke the SAT solver on this file.

3. Parse the standard output for the solution line.

4. If the solution is “s SATISFIABLE”, find variable assignment.
= Example:

lingeling 4-queens.cnf

'!:UNIVERSITY OF SOUTHERN DENMARK.DK



WRITING A SAT SOLVER




Brute-Force Solver

= iterate through all possible variable assignments
= for each assighment
= if the assighment satisfies the formula

= output SAT and the assignment

= if no assignment is found, output UNSAT

".’UNIVERSITY OF SOUTHERN DENMARK.DK



Empirical Evaluation

* For n variables, there are 2" possible variable assignments

= Example:

= 216 = 65,536 assignments for 4-queens (1 second)

= 225 = 33,554,432 assignments for 5-queens (7 minutes)

= 236 =68,719,476,736 assignments for 6-queens (2 weeks)

= 249 =562949953421312 assignments for 7-queens (400 years)
= 254 assignments for 8-queens (age of the universe)

= 281 assignments for 9-queens (ahem ... no!)

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Fast Forwarding 60+ Years

* [ncremental assignments
= Backtracking solver

* Pruning the search

’,G'UNIVERSITY OF SOUTHERN DENMARK.DK



Empirical Evaluation

* For n variables, there are 2" possible variable assignments

= Example:
= 2100 assignments for 10-queens (1.77 seconds)
= 2121 assignments for 11-queens (1.29 seconds)
= 2144 assisnments for 12-queens (9.15 seconds)
= 2169 assignments for 13-queens (5.21 seconds)

= 2196 assisnments for 14-queens (136.91 seconds)

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Fast Forwarding 60+ Years

* Incremental assignments
= Backtracking solver

* Pruning the search

= Backjumping

= Conflict-driven learning
= Restarts

* Forgetting

”.’UNIVERSITY OF SOUTHERN DENMARK.DK



Empirical Evaluation

* For n variables, there are 2" possible variable assignments

= Example:
= 2256 assignments for 16-queens (0.02 seconds)
= 21024 assignments for 32-queens (0.10 seconds)
= 24096 assignments for 64-queens (1.08 seconds)
= 216384 assignments for 128-queens (17.92 seconds)
= 265536 assignments for 256-queens (366.05 seconds)

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Efficient SAT Solving

" in many cases, SAT problems can be solved efficiently
= state-of-the-art SAT solvers can be used as black boxes
= success of SAT solvers based on

= relatively simple but highly-optimized algorithms

" innovative and very pragmatic data structures

= used extensively for scheduling, hardware and software
verification, mathematical proofs, ...

',G'UNIVERSITY OF SOUTHERN DENMARK.DK



Take Home Slide

= SAT Problem = satisfiability of propositional logic formulas

= SAT used to successfully model hard (combinatorial)
problems

= solving the SAT problem is hard in the general case

= advanced SAT solvers work fine (most of the time)

'!:UNIVERSITY OF SOUTHERN DENMARK.DK



