

Supervised Learning and Clustering

Melih Kandemir

University of Southern Denmark Department of Mathematics and Computer Science (IMADA) kandemir@imada.sdu.dk

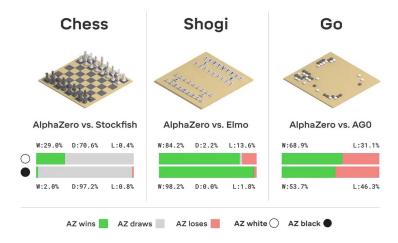
December 4, 2024

Section 1: What is machine learning?

A computer program is said to learn from experience E with respect to a task T and performance measure P, if its performance at task T, as measured in P, improves with experience E.

What can machine learning do?

What can machine learning do?



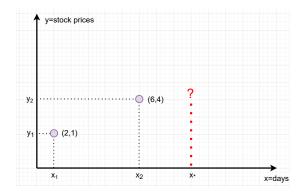
What can machine learning do?

M Tell me how ChatGPT works.

ChatGPT is a large language model that uses deep learning techniques to generate human-like text. It is based on the GPT (Generative Pre-trained Transformer) architecture, which uses a transformer neural network to process and generate text. The model is pre-trained on a massive dataset of text, such as books, articles, and websites, so it can understand the patterns and structure of natural language. When given a prompt or a starting point, the model uses this pre-trained knowledge to generate text that continues the given input in a coherent and natural way.

B

Stock price prediction

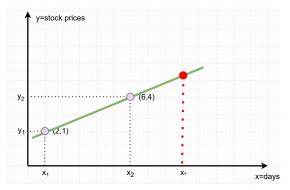


We are given the following two observations:

- The stock price at day number 2 is 1 DKK.
- The stock price at day number 6 is 4 DKK.

How can we predict the price at an arbitrary day x_* in the future?

How far do we get with high school math?

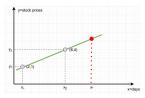


• Find the equation of the line passing through the two points

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) \to y - 1 = \frac{4 - 1}{6 - 2}(x - 2) \to y = 0.75x - 0.5$$

• Treat the line as a predictor function: f(x) = 0.75x - 0.5

Which recipe did we follow?



• Collect a data set, i.e. a set of observations

$$S = \{(2,1), (6,4)\}$$

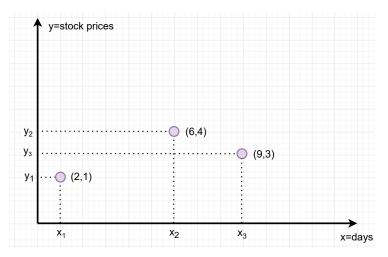
- Assume a model about how the system works: a line
- Fit the model to data, i.e. learn: Find the equation of the line passing through the two points

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \to y - 1 = \frac{4 - 1}{6 - 2} (x - 2)$$
$$\to y = 0.75x - 0.5$$

• Use f(x) = 0.75x - 0.5 to make new predictions, i.e. generalize.

What if we have a third observation?

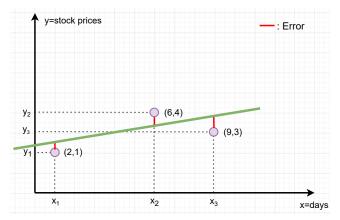
Now machine learning starts.



There is no line that can go through all the three data points!

M. Kandemir (SDU/IMADA)

How about finding the **best** line y = ax + b?



- For each choice of *a*, *b*, we will have a different line. Which one is the best? Best in terms of what?
- **Hint:** Whichever line we choose, the model will make an **error**. Quantify the error first, minimize the error next.

M. Kandemir (SDU/IMADA)

Supervised Learning and Clustering

Error

Since it does not matter if our prediction y_* was above or below the target value y, it is reasonable to define the error as:

What is the geometric shape of the function that has y_* on the x-axis and $e(y, y_*)$ on the y-axis?

Loss

Each time our model makes a prediction, it will incur some error. The sum of these errors gives us the **loss** of our model (a line defined by a slope a and an intercept b) on the data set S^1 :

$$L(a, b, S) = \frac{1}{3} \sum_{i=1}^{3} e(f(x_i, a, b), y_i)$$

= $\frac{1}{3} \sum_{i=1}^{3} (f(x_i, a, b) - y_i)^2$
= $\frac{1}{3} (2a + b - 1) + \frac{1}{3} (6a + b - 4) + \frac{1}{3} (9a + b - 3)$
= $\sum_{i=1}^{3} \frac{1}{3} (ax_i + b - y_i)^2$

¹Remember: $S = \{(x_1, y_1) = (2, 1), (x_2, y_2) = (6, 4), (x_3, y_3) = (9, 3)\}$

M. Kandemir (SDU/IMADA)

Supervised Learning and Clustering

Learning: Choosing the best of three lines

Let

$$\mathcal{H} := \{(a_1, b_1), (a_2, b_2), (a_3, b_3)\}$$

be all the options we have. How would you choose the best one?

Learning: Choosing the best of three lines

Evaluate the loss with each option

$$L(a_1, b_1, S) := \frac{1}{3}(2a_1 + b_1 - 1) + \frac{1}{3}(6a_1 + b_1 - 4) + \frac{1}{3}(9a_1 + b_1 - 3)$$

$$L(a_2, b_2, S) := \frac{1}{3}(2a_2 + b_2 - 1) + \frac{1}{3}(6a_2 + b_2 - 4) + \frac{1}{3}(9a_3 + b_3 - 3)$$

$$L(a_3, b_3, S) := \frac{1}{3}(2a_3 + b_3 - 1) + \frac{1}{3}(6a_2 + b_2 - 4) + \frac{1}{3}(9a_3 + b_3 - 3)$$

and choose the line that gives the smallest loss. In formal terms, choose a_{best}, b_{best} that satisfies

$$L(a_{best}, b_{best}, S) = \min\{L(a_1, b_1, S), L(a_2, b_2, S), L(a_3, b_3, S)\}.$$

Choosing the argument that minimizes a function can be expressed shortly via the $\arg \min$ operation:

$$a_{best}, b_{best} = \arg\min_{(a,b)\in\mathcal{H}} L(a,b,S)$$

Learning: Choosing the best of infinitely many lines

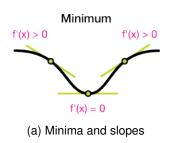
- In fact *a*, *b* can be any real number. So we have infinite number of options. How shall we find out the best one?
- Best: *a*, *b* that minimizes the loss:

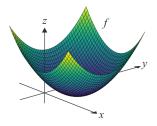
$$a_{best}, b_{best} = \arg\min_{a,b\in\mathbb{R}} L(a,b,S)$$

- What is special with the point $L(a_{best}, b_{best}, S)$? Hint: How does the loss function change in the neighborhood of this point?
 - If there is upward slope, turn back and go down.
 - ► If there is downward slope, go further ahead.
 - If there is no slope, here it is!

How can we express the change of a function value with respect to a change in its input values in mathematical terms?

The derivative!





(b) 2-dimensional loss

We are looking for values a_{best} , b_{best} that satisfy:

$$\begin{split} L_a'(a = a_{best}, b = b_{best}, S) &= 0, \\ L_b'(a = a_{best}, b = b_{best}, S) &= 0. \end{split}$$

Recipe for finding a_{best} and b_{best}

- Set $L'_b(a, b, S) = 0$ and solve for b, which will be an expression of b_{best} in terms of a.
- Set $L'_a(a, b = b_{best}, S) = 0$ and solve for a, which will be a function of b_{best} . Replace wherever you see b_{best} by the expression found in Step (1).
- Replace the solution in Step (2) into the expression found in Step (1) to find b_{best}.

Step 1: Find b_{best} in terms of a

$$0 = \frac{1}{3} \sum_{i=1}^{3} \left((ax_i + b - y_i)^2 \right)'_b \quad \text{as } (f(x) + g(x))' = f'(x) + g'(x)$$
$$= \sum_{i=1}^{3} (ax_i + b - y_i) \quad \text{as } f(g(x))' = f'(g(x))g'(x)$$
$$= 3b - \sum_{i=1}^{3} (y_i - ax_i) \quad \text{Rearrange terms}$$

Then leaving b alone on one side, we get

$$b_{best} = \underbrace{\frac{1}{3} \sum_{i=1}^{3} y_i}_{\bar{y}} - a \underbrace{\left(\frac{1}{3} \sum_{i=1}^{3} x_i\right)}_{\bar{x}} = \bar{y} - a\bar{x}$$

where \bar{x} and \bar{y} are the *center of mass* of the data.

M. Kandemir (SDU/IMADA)

Supervised Learning and Clustering

Step 2: Solve for a_{best}

$$0 = \frac{1}{3} \sum_{i=1}^{3} \left((ax_i + b_{best} - y_i)^2 \right)'_a$$

= $\frac{1}{3} \sum_{i=1}^{3} \left((ax_i + (\bar{y} - a\bar{x}) - y_i)^2 \right)'_a$
= $\sum_{i=1}^{3} (a(x_i - \bar{x}) - (y_i - \bar{y}))(x_i - \bar{x})$

Leaving a alone on one side, we get

$$a_{best} = \frac{\sum_{i=1}^{3} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{3} (x_i - \bar{x})^2}$$

Step 3: Evaluate *b*_{best}

$$b_{best} = \bar{y} - a_{best}\bar{x}$$

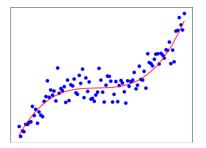
= $\bar{y} - \left(\frac{\sum_{i=1}^{3} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{3} (x_i - \bar{x})^2}\right)\bar{x}$

The best fitting line to data set S is then

$$f(x) = \frac{\sum_{i=1}^{3} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{3} (x_i - \bar{x})^2} x + \bar{y} - \left(\frac{\sum_{i=1}^{3} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{3} (x_i - \bar{x})^2}\right) \bar{x}$$

We can use this function to predict the output of any x we want.

What if?



- The input-output relationship is nonlinear, i.e. no line-shaped predictor evaluated on the input can even approximate the output.
- We can evaluate the derivatives for arbitrary *a*, *b*, but, cannot find *a*, *b* values that make the derivatives zero?

Re-express the derivative in a more generic way

$$L'_{a}(a,b,S) = \frac{2}{3} \sum_{i=1}^{3} \underbrace{(ax_{i}+b-y_{i})}_{f(x_{i};a,b)-y_{i}} \underbrace{x_{i}}_{(ax_{i})'_{a}}$$

The solution template would be the same if:

- we had not 3 but m data points, i.e. $S = (x_1, y_1), \ldots, (x_m, y_m)$
- our model were not a line but an arbitrary function $f(x; \theta)$
- we computed the derivative of an arbitrary parameter θ of this function

$$L'_{\theta}(\theta, S) = \frac{2}{m} \sum_{i=1}^{m} (f(x_i; \theta) - y_i) f'_{\theta}(x_i; \theta)$$

The Gradient Descent Algorithm

- Choose a learning rate $\alpha > 0$.
- Initialize θ to an arbitrary value
- repeat

 $\blacktriangleright \ \theta \leftarrow \theta - \alpha L_{\theta}'(\theta, S)$

• **until** θ no longer changes

Making sense of gradient descent

Placing the generic loss derivative calculated in the previous slide into the update rule:

$$\theta \leftarrow \theta - \frac{2\alpha}{m} \sum_{i=1}^{m} (f(x_i; \theta) - y_i) f'_{\theta}(x_i)$$

In natural language, change parameter θ proportionally to

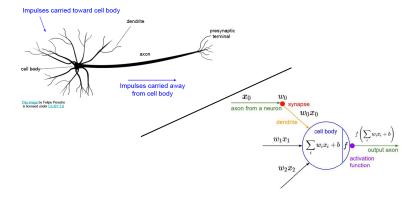
- The signed prediction error of the current model $f(x_i; \theta) y_i$
- The rate the predictions of the model changes $f'_{\theta}(x_i)$

This means,

- Make big changes when predictions are bad
- Stop changing when predictions are good

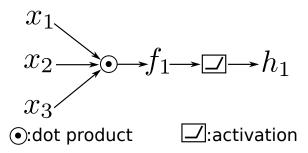
Perceptron: The atom of intelligence

North-West: Biological neuron South-East: Artificial neuron (perceptron)



The computational graph of a perceptron

Computational graph: block diagram of mathematical operations.



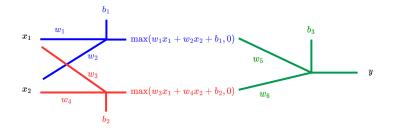
The neuron has weights assigned to each input channel:

• w_1 for x_1 , w_2 for x_2 , w_3 for x_3 , and a bias term *b* to model the intercept just as in the line fitting example above.

It processes the given input in two steps:

- Linear mapping: $f = \sum_{i_1}^3 w_i x_i + b$
- Nonlinear activation, for example: $h = \max(0, f)$

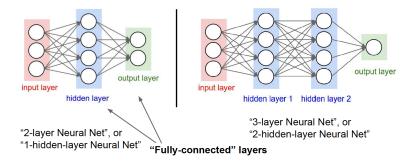
Neural net: A group of connected perceptrons



This neural net will make the following prediction for the input observations (x_1, x_2) :

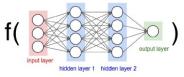
$$f(x_1, x_2) = w_5 \Big(\max(w_1 x_1 + w_2 x_2 + b_1, 0) \Big) \\ + w_6 \Big(\max(w_3 x_1 + w_4 x_2 + b_2, 0) \Big) + b_3$$

The Multi-Layer Perceptron (MLP)



Large Language Models

• The predictor is not a line but a neural network



• The input is not a single value but a long sequence of words:

f(her mother would like) = to

Large Language Models

• The neural net learns to pay more attention to important information in the input sequence:

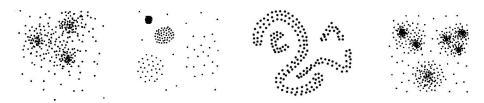
Attended words influence the output, unattended words are ignored.

• The model generates text progressively by taking its own predictions as input, i.e. **autoregression**:

f(her mother would like) = tof(her mother would like to) = buyf(her mother would like to buy) = anf(her mother would like to buy an) = icecream

Section 2: Purpose of Clustering

- identify a finite number of categories (classes, groups: clusters) in a given dataset
- similar objects shall be grouped in the same cluster, dissimilar objects in different clusters
- similarity is highly subjective, depending on the application scenario



A Dataset can be Clustered in Different Meaningful Ways

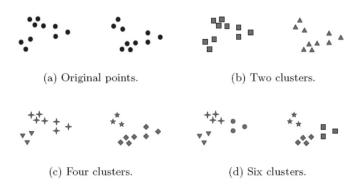
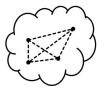


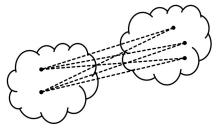
Figure 8.1. Different ways of clustering the same set of points.

Criteria of Quality: Cohesion and Separation

- **cohesion:** how strong are the cluster objects connected (how similar, pairwise, to each other)?
- separation: how well is a cluster separated from other clusters?



small within cluster distances



large between cluster distances

Optimization of Cohesion

Partitional clustering algorithms partition a dataset into k clusters, typically minimizing some cost function (compactness criterion), i.e., optimizing cohesion.

Assumptions for Partitioning Clustering

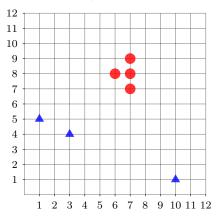
Central assumptions for approaches in this family are typically:

- number k of clusters known (i.e., given as input)
- clusters are characterized by their compactness
- compactness measured by some distance function (e.g., distance of all objects in a cluster from some cluster representative is minimal)
- criterion of compactness typically leads to convex or even spherically shaped clusters

- data points (objects) are *d*-dimensional real-valued vectors $x = (x_1, \dots, x_d) \in \mathbb{R}^d$
- and we measure distances between data point pairs by

$$||x - y||_2 = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

• centroid μ_C : mean vector of all points in cluster C

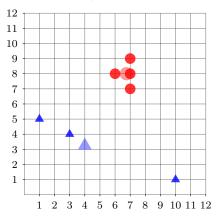


$$\mu_{C_i} = \frac{1}{|C_i|} \cdot \sum_{o \in C_i} o$$

- data points (objects) are *d*-dimensional real-valued vectors $x = (x_1, \dots, x_d) \in \mathbb{R}^d$
- and we measure distances between data point pairs by

$$||x - y||_2 = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

• centroid μ_C : mean vector of all points in cluster C



$$\mu_{C_i} = \frac{1}{|C_i|} \cdot \sum_{o \in C_i} o$$

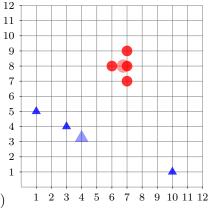
• measure of compactness for a cluster *C*:

$$TD^2(C) = \sum_{p \in C} ||p - \mu_C||_2^2$$

(a.k.a. SSQ: sum of squares)

• measure of compactness for a clustering

$$TD^{2}(C_{1}, C_{2}, \dots, C_{k}) = \sum_{i=1}^{k} TD^{2}(C_{i})$$



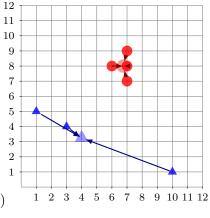
• measure of compactness for a cluster *C*:

$$TD^2(C) = \sum_{p \in C} ||p - \mu_C||_2^2$$

(a.k.a. SSQ: sum of squares)

• measure of compactness for a clustering

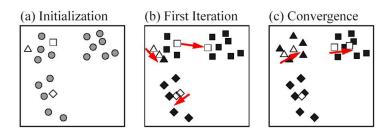
$$TD^{2}(C_{1}, C_{2}, \dots, C_{k}) = \sum_{i=1}^{k} TD^{2}(C_{i})$$



Basic Algorithm

Clustering by Minimization of Variance

- start with k (e.g., randomly selected) points as cluster representatives (or with a random partition into k "clusters")
- repeat:
 - assign each point to the closest representative
 - compute new representatives based on the given partitions (centroid of the assigned points)
- until there is no change in assignment

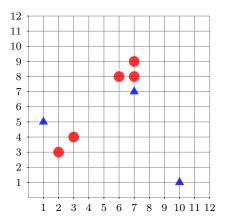


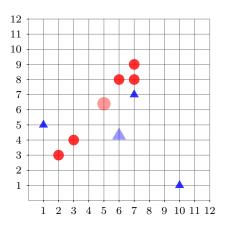
k-means

k-means is a variant of the basic algorithm:

- a centroid is immediately updated when some point changes its assignment
- *k*-means has very similar properties, but the result now depends on the order of data points in the input file

The name "*k*-means" is often used indifferently for any variant of the basic algorithm.

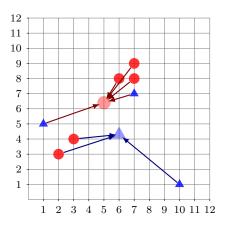




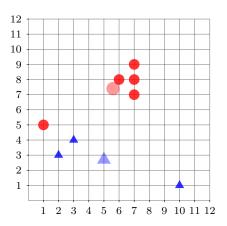
recompute centroids:

 $\mu\approx(6.0,4.3)$

 $\mu\approx(5.0,6.4)$



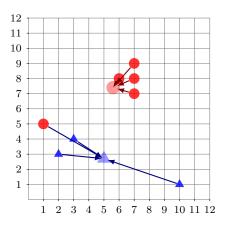
reassign points



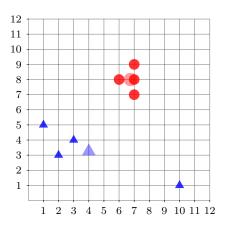
recompute centroids:

 $\mu \approx (5.0, 2.7)$

 $\mu \approx (5.6, 7.4)$



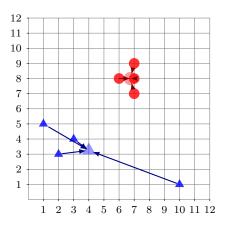
reassign points



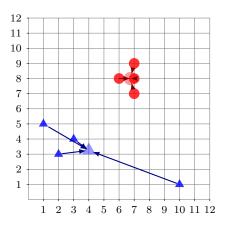
recompute centroids:

 $\mu \approx (4.0, 3.25)$

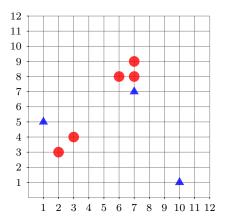
 $\mu \approx (6.75, 8.0)$

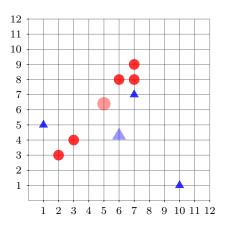


reassign points



reassign points no change convergence!

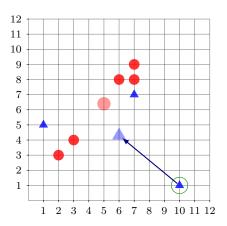




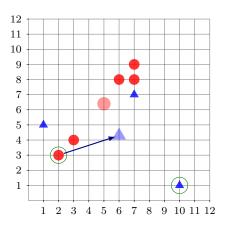
Centroids (e.g.: from previous iteration):

 $\mu\approx(6.0,4.3)$

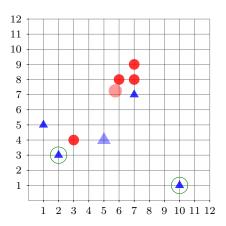
 $\mu \approx (5.0, 6.4)$



assign first point



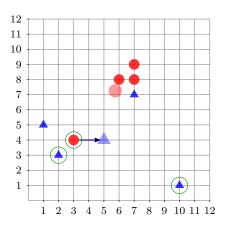
assign second point



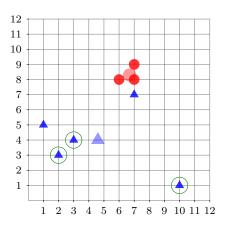
recompute centroids:

 $\mu\approx(5.0,4.0)$

 $\mu \approx (5.75, 7.25)$



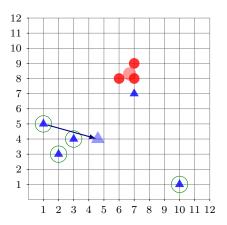
assign third point



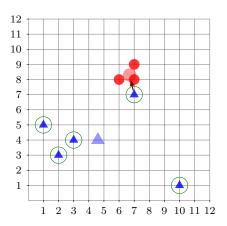
recompute centroids:

 $\mu \approx (4.6, 4.0)$

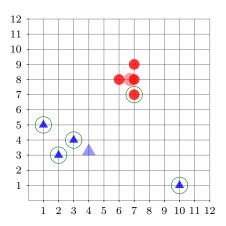
 $\mu \approx (6.7, 8.3)$



assign fourth point



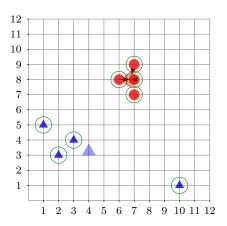
assing fifth point



recompute centroids:

 $\mu\approx(4.0,3.25)$

 $\mu \approx (6.75, 8.0)$



reassign more points

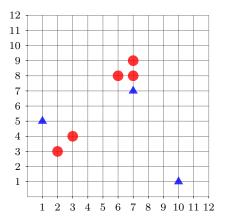


reassign more points possibly more iterations

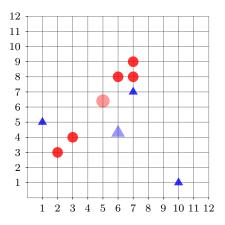


reassign more points possibly more iterations convergence

Alternative Run – Different Order



Alternative Run – Different Order

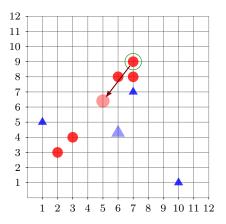


Centroids (e.g.: from previous iteration):

 $\mu \approx (6.0, 4.3)$

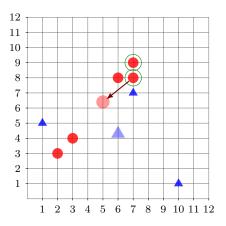
 $\mu \approx (5.0, 6.4)$

Alternative Run – Different Order



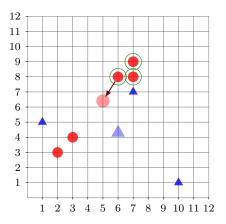
assign first point

Alternative Run – Different Order



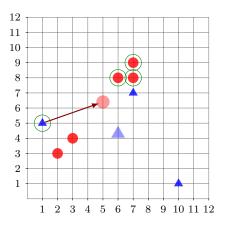
assign second point

Alternative Run – Different Order



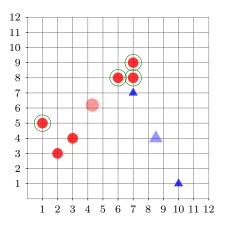
assign third point

Alternative Run – Different Order



assign fourth point

Alternative Run – Different Order

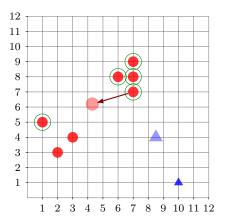


recompute centroids:

 $\mu\approx(4.0,8.5)$

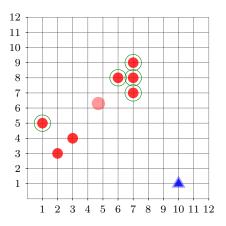
 $\mu \approx (4.3, 6.2)$

Alternative Run – Different Order



assign fifth point

Alternative Run – Different Order

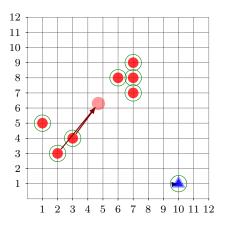


recompute centroids:

 $\mu\approx(10.0,1.0)$

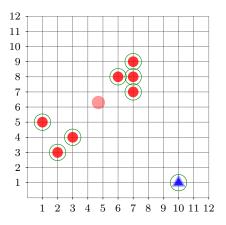
 $\mu\approx(4.7,6.3)$

Alternative Run – Different Order



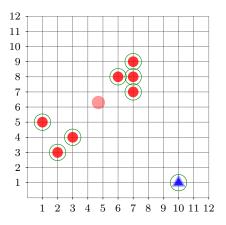
reasign more points

Alternative Run – Different Order



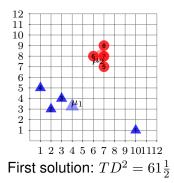
reasign more points possibly more iterations

Alternative Run – Different Order



reasign more points possibly more iterations convergence

k-means Clustering – Quality

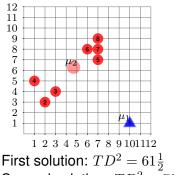


$$\begin{split} SSQ(\mu_1,p_1) &= |4-10|^2 + |3.25-1|^2 = 36 + 5\frac{1}{16} = 41\frac{1}{16} \\ SSQ(\mu_1,p_2) &= |4-2|^2 + |3.25-3|^2 = 4 + \frac{1}{16} = 4\frac{1}{16} \\ SSQ(\mu_1,p_3) &= |4-3|^2 + |3.25-4|^2 = 1 + \frac{9}{16} = 1\frac{9}{16} \\ SSQ(\mu_1,p_4) &= |4-1|^2 + |3.25-5|^2 = 9 + 3\frac{1}{16} = 12\frac{1}{16} \\ TD^2(C_1) &= 58\frac{3}{4} \end{split}$$

$$\begin{split} SSQ(\mu_2, p_5) &= |6.75 - 7|^2 + |8 - 7|^2 = \frac{1}{16} + 1 = 1\frac{1}{16} \\ SSQ(\mu_2, p_6) &= |6.75 - 6|^2 + |8 - 8|^2 = \frac{9}{16} + 0 = \frac{9}{16} \\ SSQ(\mu_2, p_7) &= |6.75 - 7|^2 + |8 - 8|^2 = \frac{1}{16} + 0 = \frac{1}{16} \\ SSQ(\mu_2, p_8) &= |6.75 - 7|^2 + |8 - 9|^2 = \frac{1}{16} + 1 = 1\frac{1}{16} \\ TD^2(C_2) &= 2\frac{3}{4} \end{split}$$

Note: $SSQ(\mu, p) = ||\mu - p||_2^2$.

k-means Clustering – Quality



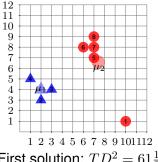
 $SSQ(\mu_1, p_1) = |10 - 10|^2 + |1 - 1|^2 = 0$ $TD^{2}(C_{1}) = 0$

```
SSQ(\mu_2, p_2) \approx |4.7 - 2|^2 + |6.3 - 3|^2 \approx 18.2
SSQ(\mu_2, p_3) \approx |4.7 - 3|^2 + |6.3 - 4|^2 \approx 8.2
SSQ(\mu_2, p_4) \approx |4.7 - 1|^2 + |6.3 - 5|^2 \approx 15.4
SSQ(\mu_2, p_5) \approx |4.7 - 7|^2 + |6.3 - 7|^2 \approx 5.7
SSQ(\mu_2, p_6) \approx |4.7 - 6|^2 + |6.3 - 8|^2 \approx 4.6
SSQ(\mu_2, p_7) \approx |4.7 - 7|^2 + |6.3 - 8|^2 \approx 8.2
SSQ(\mu_2, p_7) \approx |4.7 - 7|^2 + |6.3 - 9|^2 \approx 12.6
TD^{2}(C_{2}) \approx 72.86
```

Second solution: $TD^2 \approx 72.68$

Note: $SSQ(\mu, p) = ||\mu - p||_2^2$.

k-means Clustering – Quality



$$\begin{split} SSQ(\mu_1, p_2) &= |2-2|^2 + |4-3|^2 = 0 + 1 = 1\\ SSQ(\mu_1, p_3) &= |2-3|^2 + |4-4|^2 = 1 + 0 = 1\\ SSQ(\mu_1, p_4) &= |2-1|^2 + |4-5|^2 = 1 + 1 = 2\\ TD^2(C_1) &= 4\\ SSQ(\mu_2, p_1) &= |7.4-10|^2 + |6.6-1|^2 = 6\frac{19}{25} + 31\frac{9}{25} = 38\frac{3}{25}\\ SSQ(\mu_2, p_5) &= |7.4-7|^2 + |6.6-7|^2 = \frac{4}{25} + \frac{4}{25} = \frac{8}{25}\\ SSQ(\mu_2, p_6) &= |7.4-6|^2 + |6.6-8|^2 = 1\frac{24}{25} + 1\frac{24}{25} = 3\frac{23}{25}\\ SSQ(\mu_2, p_7) &= |7.4-7|^2 + |6.6-8|^2 = \frac{4}{25} + 1\frac{24}{25} = 2\frac{3}{25}\\ SSQ(\mu_2, p_8) &= |7.4-7|^2 + |6.6-9|^2 = \frac{4}{25} + 5\frac{19}{25} = 5\frac{23}{25}\\ TD^2(C_2) &= 50\frac{2}{5} \end{split}$$

First solution: $TD^2 = 61\frac{1}{2}$ Second solution: $TD^2 \approx 72.68$ Optimal solution: $TD^2 = 54\frac{2}{5}$

Note:
$$SSQ(\mu, p) = ||\mu - p||_2^2$$
.

Discussion

pros

- efficient: $\mathcal{O}(k \cdot n)$ per iteration, number of iterations is usually in the order of 10.
- easy to implement, thus very popular

cons

- k-means converges towards a local minimum
- *k*-means (MacQueen-variant) is order-dependent
- deteriorates with noise and outliers (all points are used to compute centroids)
- clusters need to be convex and of (more or less) equal extension
- number k of clusters is hard to determine
- strong dependency on initial partition (in result quality as well as runtime)