
Web Crawling

• Najork and Heydon, High-Performance Web Crawling, Compaq SRC Research

Report 173, 2001. Also in Handbook of Massive Data Sets, Kluwer, 2001.

• Najork and Wiener, Breadth-first search crawling yields high-quality pages.

Proc. 10th Int. WWW Conf., 2001.

1



Web Crawling

Web Crawling = Graph Traversal

S = {startpage}
repeat

remove an element s from S

foreach (s, v)
if v not crawled before

insert v in S

2



Issues

Theoretical:
• Startset S

• Choice of s (crawl strategy)

• Refreshing of changing pages.

Practical:

• Load balancing (own resources and resources of crawled
sites)

• Size of data (compact representations)

• Performance (I/Os).

3



Crawl Strategy

• Breath First Search

• Depth First Search

• Random

• Priority Search

Possible priorities:

• Often changing pages (how to estimate change rate?).

• Using global ranking scheme for queries (e.g. PageRank).

• Using query dependent ranking scheme for queries
(“focused crawling”, “collection building”).

4



BFS is Good

0 5 10 15 20 25 30 35 40 45 50 55
Day of crawl

0

2

4

6

8

A
ve

ra
ge

 P
ag

eR
an

k

Figure 1: Average PageRank score by day of crawl

CS2 is designed to give high-performance access when run
on a machine with enough RAM to store the database in
memory. On the 667 MHz Compaq AlphaServer ES40 with
16 GB of RAM used in our experiments, it takes 70-80 ms
to convert a URL into an internal id or vice versa, and 0.1
ms/link to retrieve each incoming or outgoing link as an in-
ternal id. The database for our crawl of 328 million pages
contained 351 million URLs and 6.1 billion links. Therefore,
one iteration of PageRank ran in about 15 minutes.

4. AVERAGE PAGE QUALITY OVER A
LONG CRAWL

In this section, we report on our experiments. We imple-
mented PageRank and its variants over the CS2 interface,
and ran each algorithm for 100 iterations on the 6.1 billion
link database. (In all our experiments, the PageRank com-
putation converged within less than 100 iterations.)

Although the PageRank scores are conventionally normal-
ized to sum to 1 (making it easier to think of them as a
probability distribution), we normalized them to sum to the
number of nodes in the graph (351 million). This way, the
average page has a PageRank of 1, independent of the num-
ber of pages.

Figure 1 shows the average PageRank of all pages down-
loaded on each day of the crawl. The average score for pages
crawled on the first day is 7.04, more than three times the av-
erage score of 2.07 for pages crawled on the second day. The
average score tapers from there down to 1.08 after the first
week, 0.84 after the second week, and 0.59 after the fourth
week. Clearly, we downloaded more high quality pages, i.e.,
pages with high PageRank, early in the crawl than later
on. We then decided to examine specifically when we had
crawled the highest ranked pages.

We examined the pages with the top N PageRanks, for
increasing values of N from 1 to 328 million (all of the pages
downloaded). Figure 2 graphs the average day on which we
crawled the pages with the highest N scores. Note that the
horizontal axis shows the values of N on a log scale.

All of the top 10 and 91 of the top 100 pages were crawled
on the first day. There are some anomalies in the graph
between N equals 100 and 300, where the average day fluc-
tuates between 2 and 3 (the second and third days of the
crawl). These anomalies are caused by 24 pages in the top
300 (8%) that were downloaded after the first week. Most of
those pages had a lot of local links (links from pages on the
same host), but not many remote links. In other words, the

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08
top N

5

10

15

20

25

A
ve

ra
ge

 d
ay

 t
op

 N
 p

ag
es

 w
er

e 
cr

aw
le

d

Figure 2: Average day on which the top N pages

were crawled

pages on the same host “endorse” each other, but few other
hosts endorse them. We address this phenomenon later in
the last experiment, shown in Figure 4. After N equals 400,
the curve steadily increases to day 24.5, the mean download
day of the entire crawl.

Our next experiment checks that pages with high Page-
Rank are not ranked high only because they were crawled
early. For example, a page whose outgoing links all point
to pages with links back to it might have an artificially high
PageRank if all of its outgoing links have been crawled, but
not too many other pages. For this experiment we ran the
PageRank algorithm on the graph induced by only the first
28 days of the crawl. This graph contains 217 million URLs
and 3.8 billion links between them. We then compared the
top ranked pages between the two data sets. We found that
of the top 1 million scoring pages, 96% were downloaded
during the first 4 weeks, and 76% of them were ranked in
the top 1 million pages in the 28 day data set. That is, it
was clear that those pages were important even before the
crawl had finished.

Figure 3 generalizes these statistics: for each value of N ,
we plot the percentage of overlap between the top N scoring
pages in the 28 day crawl versus the 58 day crawl. Although
the top few pages are different, by the top 20 ranked pages
there is an 80% overlap. The overlap continues in the 60-
80% range through the extent of the entire 28 day data
set. This figure suggests that breadth-first search crawling
is fairly immune to the type of self-endorsement described
above: although the size of the graph induced by the full
crawl is about 60% larger than the graph induced by the 28
day crawl, the longer crawl replaced only about 25% of the
“hot” pages discovered during the first 28 days, irrespective
of the size of the “hot” set.

Some connectivity-based metrics, such as Kleinberg’s al-
gorithm [8], consider only remote links, that is, links between
pages on different hosts. We noticed that some anomalies in
Figure 2 were due to a lot of local links, and decided to ex-
periment with a variant of the PageRank algorithm that only
propagates weights along remote links. This modification of
PageRank counts only links from different hosts as proper
endorsements of a page; links from the same host are viewed
as improper self-endorsement and therefore not counted.

Figure 4 shows our results: the average PageRank for
pages downloaded on the first day is even higher than when
all links are considered. The average PageRank for the first
day is 12.1, while it’s 1.8 on the second day and 1.0 on the

[From: Najork and Wiener, 2001]

Statistics for crawl of 328 million pages.

5



PageRank Priority is Even Better
(but computationally expensive to use. . . )

Stanford do not count in page importance computations. Note that since the pages were downloaded

by our crawler, they are all reachable from the Stanford homepage.

Under this assumption, we experimentally measured the performance of various ordering metrics

for the importance metric IB(P ), and we show the result in Figure 2. In this graph, we assumed the

Crawl & Stop model with Threshold, with threshold value G = 100. That is, pages with more than

100 backlinks were considered “hot,” and we measured how many hot pages were downloaded when the

crawler had visited x% of the Stanford pages. Under this definition, the total number of hot pages was

1,400, which was about 0.8% of all Stanford pages. The horizontal axis represents the percentage of

pages downloaded from the Stanford domain, and the vertical axis shows the percentage of hot pages

downloaded.

In the experiment, the crawler started at the Stanford homepage (http://www.stanford.edu) and,

in three different experimental conditions, selected the next page visit either by the ordering metric

IR′(P ) (PageRank), by IB′(P ) (backlink), or by following links breadth-first (breadth). The straight

line in the graph shows the expected performance of a random crawler.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

PageRank

backlink

breadth

random

Ordering metric:

Pages crawled

Hot pages crawled

Figure 2: The performance of various ordering metrics for IB(P ); G = 100

From the graph, we can clearly see that an appropriate ordering metric can significantly improve

the performance of the crawler. For example, when the crawler used IB′(P ) (backlink) as its ordering

metric, the crawler downloaded more than 50% of hot pages, when it visited less than 20% of the entire

Web. This is a significant improvement compared to a random crawler or a breadth first crawler, which

downloaded less than 30% of hot pages at the same point. One interesting result of this experiment

is that the PageRank ordering metric, IR′(R), shows better performance than the backlink ordering

metric IB′(R), even when the importance metric is IB(R). This is because of the inheritance property

of the PageRank metric, which can help avoid downloading “locally popular” pages before “globally

popular,” but “locally unpopular” pages. In additional experiments [20] (not described here) we study

9

[From: Arasu et al., Searching the Web. ACM Trans. Internet Technology, 1, 2001]

Statistics for crawl of 225.000 pages at Stanford.

6



Load Balancing

Own resources:

• Bandwidth (control global rate of requests)

• Storage (compact representations, compression)

• Industrial-strength crawlers must be distributed (e.g.
partition the url-space)

Resources of others:

• BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

• Identify yourself in request. Give contact info (you may use
)

• Monitor the crawl.

• Obey the Robots Exclusion Protocol.

7



Load Balancing

Own resources:

• Bandwidth (control global rate of requests)

• Storage (compact representations, compression)

• Industrial-strength crawlers must be distributed (e.g.
partition the url-space)

Resources of others:

• BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

• Identify yourself in request. Give contact info (you may use

� ���� � � � � ��� �
	 � � � � � )

• Monitor the crawl.

• Obey the Robots Exclusion Protocol.

7



Efficiency

• RAM: never enough for serious crawls. Efficient use of disk
based storage important. I/O when accessing data
structures is often a bottleneck.

• CPU cycles: not a problem (Java and scripting languages
are fine).

• DNS lookup can be a bottleneck (as normally
synchronized). Asynchronous DNS: check GNU adns

library.

Rates reported for serious crawlers: 200-400 pages/sec.

8



Crawler Example: Mercator

Protocol
Modules

Processing
Modules

HTTP

FTP

Gopher

Link
Extractor

GIF
Stats

Tag
Counter

Content
Seen?

DNS
Resolver

RIS URL
Filter

DUE URL Frontier
I
N
T
E
R
N
E
T

Mercator

Queue
Files

URL
Set

Log

Log

Doc
FPs

12 3

4

5 6 7 8

Figure 1: Mercator’s main components.

contained in it. For each of the extracted links, ensure that it is an
absolute URL (derelativizing it if necessary), and add it to the list of
URLs to download, provided it has not been encountered before. If
desired, process the downloaded document in other ways (e.g., index
its content).

This basic algorithm requires a number of functional components:

• a component (called the URL frontier) for storing the list of URLs to down-
load;

• a component for resolving host names into IP addresses;

• a component for downloading documents using the HTTP protocol;

• a component for extracting links from HTML documents; and

• a component for determining whether a URL has been encountered before.

The remainder of this section describes how Mercator refines this basic algo-
rithm.

Figure 1 shows Mercator’s main components. Crawling is performed by mul-
tiple worker threads, typically numbering in the hundreds. Each worker repeatedly
performs the steps needed to download and process a document. The first step
of this loop 1 is to remove an absolute URL from the shared URL frontier for
downloading.

An absolute URL begins with a scheme (e.g., “http”), which identifies the net-
work protocol that should be used to download it. In Mercator, these network

4

[From: Najork and Heydon, 2001]

9



Mercator

Further features:

• Uses fingerprinting ((sparse) hashfunction on strings) for
URL IDs - ex. � ��

or � ��� .

• Continuous crawling—crawled pages put back in queue
(prioritized using update history).

• Checkpointing (crash recovery).

• Very modular structure.

10



Details: Politeness

1 2 k3

1
C
C

C

2
X
X

X

3
A
A

A

n
F
F

F

Prioritizer

Random queue
chooser with bias to
high−priority queues

Back−end queue
router

Back−end queue
selector

A 3
C 1
F n

X 2

Host−to−
queue table

Front−end
FIFO queues

(one per
priority level)

Back−end
FIFO queues

(many more than
worker threads)

Polite, Dynamic, Prioritizing Frontier

n

1

3

2

Priority queue
(e.g., heap)

Figure 3: Our best URL frontier implementation

10

[From: Najork and
Heydon, 2001]

11



Details: Efficient URL Elimination

• Fingerprinting

• Sorted file of
fingerprints of seen
URLs.

• Cache most used
URLs.

• Non-cached URLs
checked in batches
(merge with file I/O).

025ef978
0382fc97
05117c6f
...

FP cache
2^16 entries

035f4ca8 1 http://u.gov/gw
07f6de43 2 http://a.com/xa
15ef7885 3 http://z.org/gu
234e7676 4 http://q.net/hi
27cc67ed 5 http://m.edu/tz
2f4e6710 6 http://n.mil/gd
327849c8 7 http://fq.de/pl
40678544 8 http://pa.fr/ok
42ca6ff7 9 http://tu.tw/ch

... ... ...

Front−buffer containing
FPs and URL indices
2^21 entries

Disk file containing URLs
(one per front−buffer entry)

02f567e0 1 http://x.com/hr

04deca01 2 http://g.org/rf

12054693 3 http://p.net/gt

17fc8692 4 http://w.com/ml

230cd562 5 http://gr.be/zf

30ac8d98 6 http://gg.kw/kz

357cae05 7 http://it.il/mm

4296634c 8 http://g.com/yt

47693621 9 http://z.gov/ew

... ... ...

Back−buffer containing
FPs and URL indices
2^21 entries

Disk file containing URLs
(one per back−buffer entry)

025fe427
04ff5234
07852310
...

FP disk file
100m to 1b entries

T U

F T’ U’

Figure 4: Our most efficient disk-based DUE implementation

12

[From: Najork and Heydon, 2001]

12



Details: Parallelization

Link−
extractor

URL
Filter

Host
Splitter DUE

URL
Frontier

HTTP
module

Link−
extractor

URL
Filter

Host
SplitterDUE

URL
Frontier

HTTP
module

Link−
extractor

URL
Filter

Host
Splitter

DUE

URL
Frontier

HTTP
module

Link−
extractor

URL
Filter

Host
Splitter

DUE

URL
Frontier

HTTP
module

RIS

RIS

RISRIS

Figure 2: A four-node distributed crawling hive

of host names assigned to it. Hence, the central data structures of each crawling
process — the URL frontier, the URL set maintained by the DUE, the DNS cache,
etc. — contain data only for its hosts. Put differently, the state of a Mercator crawl
is fully partitioned across the queen and drone processes; there is no replication of
data.

In a distributed crawl, when a Link Extractor extracts a URL from a down-
loaded page, that URL is passed through the URL Filter, into a host splitter com-
ponent. This component checks if the URL’s host name is assigned to this process
or not. Those that are assigned to this process are passed on to the DUE; the others
are routed to the appropriate peer process, where it is then passed to that process’s
DUE component. Since about 80% of links are relative, the vast majority of discov-
ered URLs remain local to the crawling process that discovered them. Moreover,

7

[From: Najork and Heydon, 2001]

13



Some Experiences

200 − OK (81.36%)
404 − Not Found (5.94%)
302 − Moved temporarily (3.04%)
Excluded by robots.txt (3.92%)
TCP error (3.12%)
DNS error (1.02%)
Other (1.59%)

Figure 6: Outcome of download attempts

over the course of 17 days.2 Figure 5a shows the number of URLs processed per
day of the crawl; Figure 5b shows the bandwidth consumption over the life of the
crawl. The periodic downspikes are caused by the crawler checkpointing its state
once a day. The crawl was network-limited over its entire life; CPU load was below
50%, and disk activity was low as well.

As any web user knows, not all download attempts are successful. During
our crawl, we collected statistics about the outcome of each download attempt.
Figure 6 shows the outcome percentages. Of the 891 million processed URLs, 35
million were excluded from download by robots.txt files, and 9 million referred to
a nonexistent web server; in other words, the crawler performed 847 million HTTP
requests. 725 million of these requests returned an HTTP status code of 200 (i.e.,
were successful), 94 million returned an HTTP status code other than 200, and 28
million encountered a TCP failure.

There are many different types of content on the internet, such as HTML pages,
GIF and JPEG images, MP3 audio files, and PDF documents. The MIME (Mul-
tipurpose Internet Mail Extensions) standard defines a naming scheme for these
content types [8]. We have collected statistics about the distribution of content
types of the successfully downloaded documents. Overall, our crawl discovered
3,173 different content types (many of which are misspellings of common content
types). Figure 7 shows the percentages of the the most common types. HTML

2As a point of comparison, the current Google index contains about 700 million fully-indexed
pages (the index size claimed on the Google home page – 1.35 billion — includes URLs that have
been discovered, but not yet downloaded).

text/html (65.34%)
image/gif (15.77%)
image/jpeg (14.36%)
text/plain (1.24%)
application/pdf (1.04%)
Other (2.26%)

Figure 7: Distribution of content types

15

200 − OK (81.36%)
404 − Not Found (5.94%)
302 − Moved temporarily (3.04%)
Excluded by robots.txt (3.92%)
TCP error (3.12%)
DNS error (1.02%)
Other (1.59%)

Figure 6: Outcome of download attempts

over the course of 17 days.2 Figure 5a shows the number of URLs processed per
day of the crawl; Figure 5b shows the bandwidth consumption over the life of the
crawl. The periodic downspikes are caused by the crawler checkpointing its state
once a day. The crawl was network-limited over its entire life; CPU load was below
50%, and disk activity was low as well.

As any web user knows, not all download attempts are successful. During
our crawl, we collected statistics about the outcome of each download attempt.
Figure 6 shows the outcome percentages. Of the 891 million processed URLs, 35
million were excluded from download by robots.txt files, and 9 million referred to
a nonexistent web server; in other words, the crawler performed 847 million HTTP
requests. 725 million of these requests returned an HTTP status code of 200 (i.e.,
were successful), 94 million returned an HTTP status code other than 200, and 28
million encountered a TCP failure.

There are many different types of content on the internet, such as HTML pages,
GIF and JPEG images, MP3 audio files, and PDF documents. The MIME (Mul-
tipurpose Internet Mail Extensions) standard defines a naming scheme for these
content types [8]. We have collected statistics about the distribution of content
types of the successfully downloaded documents. Overall, our crawl discovered
3,173 different content types (many of which are misspellings of common content
types). Figure 7 shows the percentages of the the most common types. HTML

2As a point of comparison, the current Google index contains about 700 million fully-indexed
pages (the index size claimed on the Google home page – 1.35 billion — includes URLs that have
been discovered, but not yet downloaded).

text/html (65.34%)
image/gif (15.77%)
image/jpeg (14.36%)
text/plain (1.24%)
application/pdf (1.04%)
Other (2.26%)

Figure 7: Distribution of content types

15

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

5% 

10% 

15% 

20% 

Figure 8: Distribution of document sizes

pages (of type text/html) account for nearly two-thirds of all documents; images
(in both GIF and JPEG formats) account for another 30%; all other content types
combined account for less than 5%.

Figure 8 is a histogram showing the document size distribution. In this figure,
the documents are distributed over 22 bins labeled with exponentially increasing
document sizes; a document of size n is placed in the rightmost bin with a label not
greater than n. Of the 725 million documents that were successfully downloaded,
67% were between 2K and 32K bytes in size, corresponding to the four tallest bars
in the figure.

Figure 9 shows the distribution of content across web servers. Figure 9a mea-
sures the content using a granularity of whole pages, while Figure 9b measures
content in bytes. Both figures are plotted on a log-log scale, and in both, a point
(x, y) indicates that x web servers had at least y pages/bytes. The near-linear shape
of the plot in Figure 9a indicates that the distribution of pages over web servers is
Zipfian.

Finally, Figure 10 shows the distributions of web servers and web pages across
top-level domains. About half of the servers and pages fall into the .com domain.
For the most part, the numbers of hosts and pages in a top-level domain are well-

1

4

16

64

256

1K

4K

16K

64K

256K

1M

4M

1 10 100 1000 10000 100000 1000000 10000000
1

4

16

64

256

1K

4K

16K

64K

256K

1M

4M

16M

64M

256M

1G

4G

16G

64G

1 10 100 1000 10000 100000 1000000 10000000

(a) Distribution of pages over web servers (b) Distribution of bytes over web servers

Figure 9: Document and web server size distributions

16

14



Some Experiences

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

5% 

10% 

15% 

20% 

Figure 8: Distribution of document sizes

pages (of type text/html) account for nearly two-thirds of all documents; images
(in both GIF and JPEG formats) account for another 30%; all other content types
combined account for less than 5%.

Figure 8 is a histogram showing the document size distribution. In this figure,
the documents are distributed over 22 bins labeled with exponentially increasing
document sizes; a document of size n is placed in the rightmost bin with a label not
greater than n. Of the 725 million documents that were successfully downloaded,
67% were between 2K and 32K bytes in size, corresponding to the four tallest bars
in the figure.

Figure 9 shows the distribution of content across web servers. Figure 9a mea-
sures the content using a granularity of whole pages, while Figure 9b measures
content in bytes. Both figures are plotted on a log-log scale, and in both, a point
(x, y) indicates that x web servers had at least y pages/bytes. The near-linear shape
of the plot in Figure 9a indicates that the distribution of pages over web servers is
Zipfian.

Finally, Figure 10 shows the distributions of web servers and web pages across
top-level domains. About half of the servers and pages fall into the .com domain.
For the most part, the numbers of hosts and pages in a top-level domain are well-

1

4

16

64

256

1K

4K

16K

64K

256K

1M

4M

1 10 100 1000 10000 100000 1000000 10000000
1

4

16

64

256

1K

4K

16K

64K

256K

1M

4M

16M

64M

256M

1G

4G

16G

64G

1 10 100 1000 10000 100000 1000000 10000000

(a) Distribution of pages over web servers (b) Distribution of bytes over web servers

Figure 9: Document and web server size distributions

16
.com (47.20%)
.de (7.93%)
.net (7.88%)
.org (4.63%)
.uk (3.29%)
raw IP addresses (3.25%)
.jp (1.80%)
.edu (1.53%)
.ru (1.35%)
.br (1.31%)
.kr (1.30%)
.nl (1.05%)
.pl (1.02%)
.au (0.95%)
Other (15.52%)

.com (51.44%)

.net (6.74%)

.org (6.31%)

.edu (5.56%)

.jp (4.09%)

.de (3.37%)

.uk (2.45%)
raw IP addresses (1.43%)
.ca (1.36%)
.gov (1.19%)
.us (1.14%)
.cn (1.08%)
.au (1.08%)
.ru (1.00%)
Other (11.76%)

(a) Distribution of hosts over (b) Distribution of pages over
top-level domains top-level domains

Figure 10: Distribution of hosts and pages over top-level domains

correlated. However, there are some interesting wrinkles. For example, the .edu
domain contains only about 1.53% of the hosts, but 5.56% of the total pages. In
other words, the average university web server contains almost four times as many
pages as the average server on the web at large.

5 Conclusion

High-performance web crawlers are an important component of many web ser-
vices. Building a high-performance crawler is a non-trivial endeavor: the data
manipulated by the crawler is too big to fit entirely in memory, so there are perfor-
mance issues related to how to balance the use of disk and memory. This chapter
has enumerated the main components required in any crawler, and it has discussed
design alternatives for some of those components. In particular, the chapter de-
scribed Mercator, an extensible, distributed, high-performance crawler written en-
tirely in Java.

Mercator’s design features a crawler core for handling the main crawling tasks,
and extensibility through a component-based architecture that allows users to sup-
ply new modules at run-time for performing customized crawling tasks. These
extensibility features have been quite successful. We were able to adapt Mercator
to a variety of crawling tasks, and the new code was typically quite small (tens to
hundreds of lines). Moreover, the flexibility afforded by the component model en-
couraged us to experiment with different implementations of the same functional
components, and thus enabled us to discover new and efficient data structures. In
our experience, these innovations produced larger performance gains than low-
level tuning of our user-space code [13].

Mercator’s scalability design has also worked well. It is easy to configure the
crawler for varying memory footprints. For example, we have run it on machines

17

[From: Najork and Heydon, 2001]

15



Robot Exclusion Protocol

Simple protocol suggested by Martijn Koster in 1993. De facto
standard for robot exclusion. Full details at � ���� � � � � � � �
	 � � � � � .

• Single file named � � � � ��� � �
	 � in root of server.

• Contains simple directions for exclusion of parts of site.

Example:

�� � ��� � � �� ��� �

� 	� � 
 
 � �� �� � 	 � � 	 � �

� 	� � 
 
 � �� � � �� �

� 	� � 
 
 � �� �� � � �

�� � ��� � � �� ��� � � � � � �

� 	� � 
 
 � �� �

16



Robot Exclusion in HTML

Per page exclusion through the

�� � �

tag in HTML.

Example:

� �� � � � � � � � � � 	 � 	 � 
 � � 	 � � � � � � � � 	� � � ��� � 	� 	� � 	� ��

Further details at � ���� � � � � � � � � � � � � � 
 � �
(the HTML 4.01

specification) and at � � � � � � � � ��� �
	 � � � � �

17



HTTP Protocol

One request message, one response message (over a single
TCP connection).

Format of messages:

� �� � �� � 
 	 � �

� � � � � � 
 	 � �

���
� � � � � � 
 	 � �

� � � ��� �

� �� � �� � � 
 	 � �

� � � � � � 
 	 � �

���
� � � � � � 
 	 � �

� � ���

Request Response

18



HTTP Example

� � � �� � � � � 	 � � � � � � � � � � 
 � � �� �� � �

� �� ��� � ���� � � � � � 	 � �� � � �

�� � � � ��� � �	 � � �

�� � �� � � � � ��� � �� 	 
 
 � � � � � �� �

� � �� � � � � 	 � � 	


� �� � � � � � � � � �� � �	 � � � � � 


� �� � � � � � � � � � � �� � � �

� � � �� �

� �� � ��

���

Request Response

19



URLs
Absolute:

� � � � � � � � ���� � � � � � 	 � �� �� � � � � �� 	 � � � �� �

� � � � � � � � � � � � � � � � 	 � �� � � � �� 	 � � � �� � � � � 	 � �� � � � �

� � � � � � � � ���� � � � � � 	 � �� �� �� � 	 � � 	 � � 	 � � � �� 	 �

Relative:

�
� � 	 � � � �� � � � � � 


Relative to

• URL of doc containing URL

• URL specified in � � � 
 � � HTML tag.

Encoded characters:

� ���� � � ��� �� �� � � 
 �

→

� ���� � � �� �� �� � � � � 
 �

20



Normalizing URLs

• Add portnumber if not present (�
� �

).

• Convert escaped chars to real chars.

• Remove � � � � � � � � � � from URL.

21



Further Resources
Further resources for implementing a crawler:

• Another good paper with practical info:
Shkapenyuk and Suel: Design and Implementation of a
High-Performance Distributed Web Crawler. IEEE Int. Conf. on Data
Engineering (ICDE), February 2002.
(http://cis.poly.edu/suel/papers/crawl.ps)

• HTML specification (www.w3.org)

• A free book on programming web agents.
(http://www.oreilly.com/openbook/webclient)

• Software libraries (Java, Perl, Python, C++) for net
programming.

• List of MIME-types at IANA IDs - ex.
(

� � � � � � � � � � 	� 	 � � � � � 	 � � � � � �� � 	 � � � � � � � 	 �� � �� � � �

� � � 	 � � � � � �� �
22


	Web Crawling
	Issues
	Crawl Strategy
	BFS is Good
	PageRank Priority is Even Better 
	Load Balancing
	Efficiency
	Crawler Example: Mercator
	Mercator
	Details: Politeness
	Details: Efficient URL Elimination
	Details: Parallelization
	Some Experiences
	Some Experiences
	Robot Exclusion Protocol
	Robot Exclusion in HTML
	HTTP Protocol
	HTTP Example
	URLs
	Normalizing URLs
	Further Resources

