
Web Crawling

• Najork and Heydon, High-Performance Web Crawling, Compaq SRC Research

Report 173, 2001. Also in Handbook of Massive Data Sets, Kluwer, 2001.

• Najork and Wiener, Breadth-first search crawling yields high-quality pages.

Proc. 10th Int. WWW Conf., 2001.

1



Web Crawling

Web Crawling = Graph Traversal

S = {startpages}
repeat

remove an element s from S

foreach (s, v)
if v not crawled before

insert v in S

2



Issues

Theoretical:
• Startset S

• Choice of s (crawl strategy)

• Refreshing of changing pages.

Practical:

• Load balancing (own resources and resources of crawled
sites)

• Size of data (compact representations)

• Performance (I/Os).

3



Crawl Strategy

• Breath First Search

• Depth First Search

• Random

• Priority Search

Possible priorities:

• Often changing pages (how to estimate change rate?).

• Using global ranking scheme for queries (e.g. PageRank).

• Using query dependent ranking scheme for queries
(“focused crawling”, “collection building”).

4



BFS is Good

0 5 10 15 20 25 30 35 40 45 50 55
Day of crawl

0

2

4

6

8

A
ve

ra
ge

 P
ag

eR
an

k

Figure 1: Average PageRank score by day of crawl

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08
top N

5

10

15

20

25

A
ve

ra
ge

 d
ay

 t
op

 N
 p

ag
es

 w
er

e 
cr

aw
le

d

Figure 2: Average day on which the top N pages

were crawled

[From: Najork and Wiener, 2001]

Statistics for crawl of 328 million pages.

5



PageRank Priority is Even Better
(but computationally expensive to use. . . )

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

PageRank

backlink

breadth

random

Ordering metric:

Pages crawled

Hot pages crawled

Figure 2: The performance of various ordering metrics for IB(P ); G = 100

[From: Arasu et al., Searching the Web. ACM Trans. Internet Technology, 1, 2001]

Statistics for crawl of 225.000 pages at Stanford.

6



Load Balancing

Own resources:

• Bandwidth (control global rate of requests)

• Storage (compact representations, compression)

• Industrial-strength crawlers must be distributed (e.g.
partition the url-space)

7



Load Balancing

Own resources:

• Bandwidth (control global rate of requests)

• Storage (compact representations, compression)

• Industrial-strength crawlers must be distributed (e.g.
partition the url-space)

Resources of others:

• BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

• Identify yourself in request. Give contact info (mail and
www).

• Monitor the crawl.

• Obey the Robots Exclusion Protocol (see
www.robotstxt.org).

7



Efficiency

• RAM: never enough for serious crawls. Efficient use of disk
based storage important. I/O when accessing data
structures is often a bottleneck.

• CPU cycles: not a problem (Java and scripting languages
are fine).

• DNS lookup can be a bottleneck if using synchronized
version. Brug asynchronous DNS (e.g. GNU adns library).

Rates reported for serious crawlers: 200-400 pages/sec.

8



Crawler Example: Mercator

Protocol
Modules

Processing
Modules

HTTP

FTP

Gopher

Link
Extractor

GIF
Stats

Tag
Counter

Content
Seen?

DNS
Resolver

RIS URL
Filter

DUE URL Frontier
I
N
T
E
R
N
E
T

Mercator

Queue
Files

URL
Set

Log

Log

Doc
FPs

12 3

4

5 6 7 8

Figure 1: Mercator’s main components.

[From: Najork and Heydon, 2001]

9



Mercator

Further features:

• Uses fingerprinting ((sparse) hashfunction on strings) for
URL IDs (see e.g. ex. md5 (128 bit) or the sha family
(160-512 bits)).

• Continuous crawling—crawled pages put back in queue
(prioritized using update history).

• Checkpointing (crash recovery).

• Very modular structure.

10



Details: Politeness

1 2 k3

1
C
C

C

2
X
X

X

3
A
A

A

n
F
F

F

Prioritizer

Random queue
chooser with bias to
high−priority queues

Back−end queue
router

Back−end queue
selector

A 3
C 1
F n

X 2

Host−to−
queue table

Front−end
FIFO queues

(one per
priority level)

Back−end
FIFO queues

(many more than
worker threads)

Polite, Dynamic, Prioritizing Frontier

n

1

3

2

Priority queue
(e.g., heap)

Figure 3: Our best URL frontier implementation

[From: Najork and
Heydon, 2001]

11



Details: Efficient URL Elimination

• Fingerprinting

• Sorted file of
fingerprints of seen
URLs.

• Cache most used
URLs.

• Non-cached URLs
checked in batches
(merge with file I/O).

025ef978
0382fc97
05117c6f
...

FP cache
2^16 entries

035f4ca8 1 http://u.gov/gw
07f6de43 2 http://a.com/xa
15ef7885 3 http://z.org/gu
234e7676 4 http://q.net/hi
27cc67ed 5 http://m.edu/tz
2f4e6710 6 http://n.mil/gd
327849c8 7 http://fq.de/pl
40678544 8 http://pa.fr/ok
42ca6ff7 9 http://tu.tw/ch

... ... ...

Front−buffer containing
FPs and URL indices
2^21 entries

Disk file containing URLs
(one per front−buffer entry)

02f567e0 1 http://x.com/hr

04deca01 2 http://g.org/rf

12054693 3 http://p.net/gt

17fc8692 4 http://w.com/ml

230cd562 5 http://gr.be/zf

30ac8d98 6 http://gg.kw/kz

357cae05 7 http://it.il/mm

4296634c 8 http://g.com/yt

47693621 9 http://z.gov/ew

... ... ...

Back−buffer containing
FPs and URL indices
2^21 entries

Disk file containing URLs
(one per back−buffer entry)

025fe427
04ff5234
07852310
...

FP disk file
100m to 1b entries

T U

F T’ U’

Figure 4: Our most efficient disk-based DUE implementation

[From: Najork and Heydon, 2001]

12



Details: Parallelization

Link−
extractor

URL
Filter

Host
Splitter

DUE URL
Frontier

HTTP
module

Link−
extractor

URL
Filter

Host
SplitterDUE

URL
Frontier

HTTP
module

Link−
extractor

URL
Filter

Host
Splitter

DUE

URL
Frontier

HTTP
module

Link−
extractor

URL
Filter

Host
Splitter

DUE

URL
Frontier

HTTP
module

RIS

RIS

RISRIS

Figure 2: A four-node distributed crawling hive

[From: Najork and Heydon, 2001]

13



Some Experiences

200 − OK (81.36%)
404 − Not Found (5.94%)
302 − Moved temporarily (3.04%)
Excluded by robots.txt (3.92%)
TCP error (3.12%)
DNS error (1.02%)
Other (1.59%)

Figure 6: Outcome of download attempts

text/html (65.34%)
image/gif (15.77%)
image/jpeg (14.36%)
text/plain (1.24%)
application/pdf (1.04%)
Other (2.26%)

Figure 7: Distribution of content types

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

5% 

10% 

15% 

Figure 8: Distribution of document sizes

14



Some Experiences

1

4

16

64

256

1K

4K

16K

64K

256K

1M

4M

1 10 100 1000 10000 100000 1000000 10000000
1

4

16

64

256

1K

4K

16K

64K

256K

1M

4M

16M

64M

256M

1G

4G

16G

64G

1 10 100 1000 10000 100000 1000000 10000000

(a) Distribution of pages over web servers (b) Distributionof bytes over web servers

Figure 9: Document and web server size distributions

.com (47.20%)

.de (7.93%)

.net (7.88%)

.org (4.63%)

.uk (3.29%)
raw IP addresses (3.25%)
.jp (1.80%)
.edu (1.53%)
.ru (1.35%)
.br (1.31%)
.kr (1.30%)
.nl (1.05%)
.pl (1.02%)
.au (0.95%)
Other (15.52%)

.com (51.44%)

.net (6.74%)

.org (6.31%)

.edu (5.56%)

.jp (4.09%)

.de (3.37%)

.uk (2.45%)
raw IP addresses (1.43%)
.ca (1.36%)
.gov (1.19%)
.us (1.14%)
.cn (1.08%)
.au (1.08%)
.ru (1.00%)
Other (11.76%)

(a) Distribution of hosts over (b) Distribution of pages over
top-level domains top-level domains

[From: Najork and Heydon, 2001]

15



Robot Exclusion Protocol

Simple protocol suggested by Martijn Koster in 1993. De facto
standard for robot exclusion. Full details at www.robotstxt.org.

• Single file named robots.txt in root of server.

• Contains simple directions for exclusion of parts of site.

Example:

User-agent: *

Disallow: /cgi-bin/

Disallow: /tmp/

Disallow: /joe/

User-agent: BadBot

Disallow: /

16



Robot Exclusion in HTML

Per page exclusion through the META tag in HTML.

Example:

<META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW">

Further details at www.w3.org/TR/html4/ (the HTML 4.01
specification) and at www.robotstxt.org

17



HTTP Protocol

One request message, one response message (over a single
TCP connection).

Format of messages:

Request line

Header line
...

Header line

(Body)

Response line

Header line
...

Header line

Body

Request Response

18



HTTP Example

GET /somedir/page.html HTTP/1.1

Host: www.somefirm.com

Accept: text/*

User-Agent: Mozilla 7.0 [en]

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 345

<HTML>

<HEAD>
...

Request Response

19



URLs
Absolute:

http://www.somefirm.dk:80/main/test

http://www.somefirm.dk/main/test#thirdEntry

http://www.somefirm.dk/cgi-bin?item=123

Relative:
./dir/test.html

Relative to

• URL of doc containing URL

• URL specified in <BASE> HTML tag.

Encoded characters:

www.sdu.dk/~rolf → www.sdu.dk/%7Erolf

20



Normalizing URLs

• Add portnumber if not present (:80).

• Convert escaped chars to real chars.

• Remove ...#target from URL.

21


	Web Crawling
	Issues
	Crawl Strategy
	BFS is Good
	PageRank Priority is Even Better 
	Load Balancing
	Efficiency
	Crawler Example: Mercator
	Mercator
	Details: Politeness
	Details: Efficient URL Elimination
	Details: Parallelization
	Some Experiences
	Some Experiences
	Robot Exclusion Protocol
	Robot Exclusion in HTML
	HTTP Protocol
	HTTP Example
	URLs
	Normalizing URLs

