
Web Crawling

• Najork and Heydon, High-Performance Web Crawling, Compaq SRC Research

Report 173, 2001. Also in Handbook of Massive Data Sets, Kluwer, 2001.

• Najork and Wiener, Breadth-first search crawling yields high-quality pages.

Proc. 10th Int. WWW Conf., 2001.
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Web Crawling

Web Crawling = Graph Traversal

S = {startpages}
repeat

remove an element s from S

foreach (s, v)
if v not crawled before

insert v in S
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Issues

Theoretical:
• Startset S

• Choice of s (crawl strategy)

• Refreshing of changing pages.

Practical:

• Load balancing (own resources and resources of crawled
sites)

• Size of data (compact representations)

• Performance (I/Os).
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Crawl Strategy

• Breath First Search

• Depth First Search

• Random

• Priority Search

Possible priorities:

• Often changing pages (how to estimate change rate?).

• Using global ranking scheme for queries (e.g. PageRank).

• Using query dependent ranking scheme for queries
(“focused crawling”, “collection building”).
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BFS is Good
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Figure 1: Average PageRank score by day of crawl
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Figure 2: Average day on which the top N pages

were crawled

[From: Najork and Wiener, 2001]

Statistics for crawl of 328 million pages.
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PageRank Priority is Even Better
(but computationally expensive to use. . . )
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Figure 2: The performance of various ordering metrics for IB(P ); G = 100

[From: Arasu et al., Searching the Web. ACM Trans. Internet Technology, 1, 2001]

Statistics for crawl of 225.000 pages at Stanford.
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Load Balancing

Own resources:

• Bandwidth (control global rate of requests)

• Storage (compact representations, compression)

• Industrial-strength crawlers must be distributed (e.g.
partition the url-space)
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Load Balancing

Own resources:

• Bandwidth (control global rate of requests)

• Storage (compact representations, compression)

• Industrial-strength crawlers must be distributed (e.g.
partition the url-space)

Resources of others:

• BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

• Identify yourself in request. Give contact info (mail and
www).

• Monitor the crawl.

• Obey the Robots Exclusion Protocol (see
www.robotstxt.org).
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Efficiency

• RAM: never enough for serious crawls. Efficient use of disk
based storage important. I/O when accessing data
structures is often a bottleneck.

• CPU cycles: not a problem (Java and scripting languages
are fine).

• DNS lookup can be a bottleneck if using synchronized
version. Brug asynchronous DNS (e.g. GNU adns library).

Rates reported for serious crawlers: 200-400 pages/sec.
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Crawler Example: Mercator
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Figure 1: Mercator’s main components.

[From: Najork and Heydon, 2001]
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Mercator

Further features:

• Uses fingerprinting ((sparse) hashfunction on strings) for
URL IDs (see e.g. ex. md5 (128 bit) or the sha family
(160-512 bits)).

• Continuous crawling—crawled pages put back in queue
(prioritized using update history).

• Checkpointing (crash recovery).

• Very modular structure.
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Details: Politeness
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[From: Najork and
Heydon, 2001]

11



Details: Efficient URL Elimination

• Fingerprinting

• Sorted file of
fingerprints of seen
URLs.

• Cache most used
URLs.

• Non-cached URLs
checked in batches
(merge with file I/O).

025ef978
0382fc97
05117c6f
...

FP cache
2^16 entries

035f4ca8 1 http://u.gov/gw
07f6de43 2 http://a.com/xa
15ef7885 3 http://z.org/gu
234e7676 4 http://q.net/hi
27cc67ed 5 http://m.edu/tz
2f4e6710 6 http://n.mil/gd
327849c8 7 http://fq.de/pl
40678544 8 http://pa.fr/ok
42ca6ff7 9 http://tu.tw/ch

... ... ...

Front−buffer containing
FPs and URL indices
2^21 entries

Disk file containing URLs
(one per front−buffer entry)
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Figure 4: Our most efficient disk-based DUE implementation

[From: Najork and Heydon, 2001]

12



Details: Parallelization
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Figure 2: A four-node distributed crawling hive

[From: Najork and Heydon, 2001]
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Some Experiences

200 − OK (81.36%)
404 − Not Found (5.94%)
302 − Moved temporarily (3.04%)
Excluded by robots.txt (3.92%)
TCP error (3.12%)
DNS error (1.02%)
Other (1.59%)

Figure 6: Outcome of download attempts

text/html (65.34%)
image/gif (15.77%)
image/jpeg (14.36%)
text/plain (1.24%)
application/pdf (1.04%)
Other (2.26%)

Figure 7: Distribution of content types
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Some Experiences
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Figure 9: Document and web server size distributions
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[From: Najork and Heydon, 2001]
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Robot Exclusion Protocol

Simple protocol suggested by Martijn Koster in 1993. De facto
standard for robot exclusion. Full details at www.robotstxt.org.

• Single file named robots.txt in root of server.

• Contains simple directions for exclusion of parts of site.

Example:

User-agent: *

Disallow: /cgi-bin/

Disallow: /tmp/

Disallow: /joe/

User-agent: BadBot

Disallow: /
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Robot Exclusion in HTML

Per page exclusion through the META tag in HTML.

Example:

<META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW">

Further details at www.w3.org/TR/html4/ (the HTML 4.01
specification) and at www.robotstxt.org
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HTTP Protocol

One request message, one response message (over a single
TCP connection).

Format of messages:

Request line

Header line
...

Header line

(Body)

Response line

Header line
...

Header line

Body

Request Response
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HTTP Example

GET /somedir/page.html HTTP/1.1

Host: www.somefirm.com

Accept: text/*

User-Agent: Mozilla 7.0 [en]

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 345

<HTML>

<HEAD>
...

Request Response
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URLs
Absolute:

http://www.somefirm.dk:80/main/test

http://www.somefirm.dk/main/test#thirdEntry

http://www.somefirm.dk/cgi-bin?item=123

Relative:
./dir/test.html

Relative to

• URL of doc containing URL

• URL specified in <BASE> HTML tag.

Encoded characters:

www.sdu.dk/~rolf → www.sdu.dk/%7Erolf
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Normalizing URLs

• Add portnumber if not present (:80).

• Convert escaped chars to real chars.

• Remove ...#target from URL.
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