
I/O-Efficient Algorithms and Data Structures

Spring 2008

Rolf Fagerberg

IOEADS Spring 2008 Page 1

Course

Lectures:

• Theoretical (DM02/DM507++).

• New stuff: 1995-2007.

• Aim: General principles and methods.

Project work:

• Several small/medium programming projects (3 ECTS in total).

• Aim: Hands-on.

IOEADS Spring 2008 Page 2

Course

Literature:

• Based on lecture notes and articles.

Prerequisites:

• DM02/DM507 Algorithms and Data Structures.

Duration:

• 3rd and 4th quarter.

Credits:

• 10 ECTS (including project).

Exam:

• The projects (pass/fail), oral exam (7-step scale).

IOEADS Spring 2008 Page 3

Statement of Aims

After the course, the participant is expected to be able to:

• Describe general methods and results relevant for developing

I/O-efficient algorithms and data structures, as covered in the

course.

• Give proofs of correctness and complexity of algorithms and data

structures covered in the course.

• Formulate the above in precise language and notation.

• Implement algorithms and data structures from the course.

• Do experiments on these implementations and reflect on the results

achieved.

• Describe the implementation and experimental work done in clear

and precise language, and in a structured fashion.

IOEADS Spring 2008 Page 4

Analysis of algorithms

The standard model:

Memory

CPU

• Add: 1 unit of time

• Mult: 1 unit of time

• Branch: 1 unit of time

• MemAccess: 1 unit of time

IOEADS Spring 2008 Page 5

Reality

Memory hierarchy:

CPU Reg. Cache1

RAM

DiskCache2

Tertiary Storage

Access time Volume

Registers 1 cycle 1 Kb

Cache 5–10 cycles 1 Mb

RAM 50–100 cycles 1 Gb

Disk 30,000,000 cycles 250 Gb

CPU speed has improved

faster than RAM access

time and much faster than

disk access time

IOEADS Spring 2008 Page 6

Reality

Many real-life problems of Terabyte and even Petabyte size:

• weather

• geology/geograpy

• astrology

• financial

• WWW

• phone companies

• banks

IOEADS Spring 2008 Page 7

I/O bottleneck

I/O is the bottleneck

⇓

I/O should be optimized (not instruction count)

We need new models for this.

IOEADS Spring 2008 Page 8

Analysis of algorithms

New I/O-model:

CPU

Memory 2

Block

Memory 1

Aggarwal, Vitter, 1988Parameters:

N = no. of elements in problem.

M = no. of elements that fits in RAM.

B = no. of elements in a block on disk.

Cost: Number of I/O’s (block transfers) between Memory 1 and

Memory 2.

IOEADS Spring 2008 Page 9

Generic Example

Consider two O(n) algorithms:

1. Memory accessed randomly ⇒ page fault at each memory access.

2. Memory accessed sequentially ⇒ page fault every B memory

accesses.

O(N) I/Os vs. O(N/B) I/Os

Typically for disk: B = 103 − 105.

Note: 105 minutes = 70 days, 105 days = 274 years.

IOEADS Spring 2008 Page 10

Specific Examples

Three O(N log N) CPU-time sorting algorithms:

Worstcase Inplace

QuickSort +

MergeSort +

HeapSort + +

But:

QuickSort, MergeSort ∼ sequential access

HeapSort ∼ random access

IOEADS Spring 2008 Page 11

So:

QuickSort: O(N log
2
(N/M)/B) I/Os

MergeSort: O(N log
2
(N/M)/B)I/Os

HeapSort: O(N log
2
(N/M))I/Os

IOEADS Spring 2008 Page 12

Course Contents

• The I/O model(s).

• Algorithms, data structures, and lower bounds for basic problems:

– Permuting

– Sorting

– Searching

• I/O efficient algorithms and data structures for problems from

– computational geometry,

– strings,

– graphs.

Along the way I: Generic principles for designing I/O-efficient algorithms.

Along the way II: Hands-on experience via projects.

Along the way III: Lots of beautiful algorithmic ideas.

IOEADS Spring 2008 Page 13

Basic Results in the I/O-Model

Scanning: Θ(N
B) I/Os

Sorting: Θ(N
B logM/B(N

M)) I/Os

Permuting: Θ(min{N, N
B logM/B(N

M))}) I/Os

Searching: Θ(logB(N)) I/Os

Scanning, stacks, queues are I/O-efficient (O(1/B) per operation) out

of the box.

Most other algorithmic tasks need rethinking and new ideas.

Notable differences from standard internal model: linear time =

O(N
B) 6= O(N), sorting very close to linear time for normal parameters,

sorting = permuting for normal parameters, permuting > linear time,

sorting using search trees is far from optimal (search >> sort/N).

IOEADS Spring 2008 Page 14

