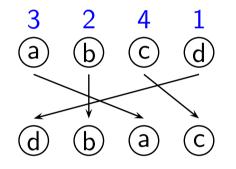
### Permuting

**Upper and Lower bounds** 

[Aggarwal, Vitter, 88]

### **Upper Bound**

Assume instance is specified by each element knowing its final position:



| Algorithm                      | Internal Cost     | I/O Cost                      |
|--------------------------------|-------------------|-------------------------------|
| 1) Place each element directly | $\Theta(N)$       | $\Theta(N)$                   |
| 2) Sort on final position      | $\Theta(N\log N)$ | $\Theta(N/B \log_{M/B}(N/B))$ |

## **Upper Bound**

Internally, 1) always best.

Externally, 2) best when  $1/B \log_{M/B}(N/B) \le 1$ .

Note: This is almost always the case practice. Example:

**External Permuting:** 

 $O(\min\{N/B\log_{M/B}(N/B), N\}) = O(\min\{\operatorname{sort}(N), N\})$ 

### Lower Bound Model

Model of memory:



- Elements are indivisible: May be moved, copied, destroyed, but newer broken up in parts.
- Assume  $M \geq 2B$ .
- May assume I/Os are block-aligned, and that at start [end], input [output] is in lowest contiguous positions on disk.

### Lower Bound

We may assume that elements are only **moved**, not copied or destroyed.

**Reason**: For any sequence of I/Os performing a permutation, exactly one copy of each element exists at end. Change all I/Os performed to only deal with these copies. Result: same number of I/Os, same permutation at end, but now I/Os only move elements.

#### Consequence:

Memory always contains a permutation of the input

#### **Define**:

 $S_t$  = number of permutations possible to reach with t I/Os.

If new X choices to make during I/O:  $S_{t+1} \leq X \cdot S_t$ .

### Bounds on Value of X

| Type of I/O | Read untouched block          | Read touched block | Write |
|-------------|-------------------------------|--------------------|-------|
| X           | $rac{N}{B} {M \choose B} B!$ | $N{M \choose B}$   | N     |

Note: at most N/B I/0s on untouched blocks.

From  $S_0 = 1$  and  $S_{t+1} \leq X \cdot S_t$  we get

$$S_t \le \left( \binom{M}{B} N \right)^t (B!)^{N/B}$$

To be able to reach every possible permutation, we need  $N! \leq S_t$ . Thus,

$$N! \le \left( \binom{M}{B} N \right)^t (B!)^{N/B}$$

is necessary for any permutation algorithm with a worst case complexity of t I/Os.

### **Lower Bound Computation**

$$\begin{pmatrix} \binom{M}{B} N \end{pmatrix}^{t} (B!)^{N/B} \ge N!$$
$$t(\log \binom{M}{B} + \log N) + (N/B) \log(B!) \ge \log(N!)$$
$$t(3B \log(M/B) + \log N) + N \log B \ge N(\log N - 1/\ln 2)$$
$$t \ge \frac{N(\log N - 1/\ln 2 - \log B)}{3B \log(M/B) + \log N}$$
$$t \ge \frac{N(\log(N/B))}{B \log(M/B) + \log N}$$

a) 
$$\log(x!) \ge x(\log x - 1/\ln 2)$$
  
Using Lemma: b)  $\log(x!) \le x \log x$   
c)  $\log {x \choose y} \le 3y \log(x/y)$  when  $x \ge 2y$ 

### **Lower Bound**

$$\Omega\left(\frac{N\log(N/B)}{B\log(M/B) + \log N}\right)$$
$$= \Omega\left(\min\left\{\frac{N\log(N/B)}{B\log(M/B)}, \frac{N\log(N/B)}{\log N}\right\}\right)$$
$$= \Omega\left(\min\{Z_1, Z_2\}\right)$$

Note 1:  $Z_1 = \operatorname{sort}(N)$ Note 2:  $Z_2 < Z_1 \Leftrightarrow B \log(M/B) < \log N \Rightarrow B < \log N \Rightarrow$ 

$$Z_2 = \frac{N\log(N/B)}{\log N} = \frac{N(\log N - \log B)}{\log N} = \Theta(N)$$

Note 3:  $Z_2 \leq N$  always.

# The I/O Complexity of Permuting

We have proven:

 $\Theta(\min\{\operatorname{sort}(N), N\})$