
Sorting

Upper and Lower bounds

[Aggarwal, Vitter, 88]

Page 1

Standard MergeSort

Merge of two sorted sequences ∼ sequential access

→ · · ·
· · ·
· · ·

MergeSort: O(N log2(N/M)/B) I/Os

Page 2

Multiway Merge

· · ·

· · ·
· · ·
· · ·
· · ·

→

• For I/=-efficient k-way merge of sorted lists we need:

M ≥ B(k + 1)⇔M/B − 1 ≥ k

• Number of I/Os: 2N/B.

Page 3

Multiway MergeSort

• N/M times sort M elements internally ⇒ N/M sorted runs of

length M .

• Merge k runs at at time, to produce (N/M)/k sorted runs of length

kM .

• Repeat: Merge k runs at at time, to produce (N/M)/k2 sorted runs

of length k2M , . . .

At most logk N/M phases, each using 2N/B I/Os.

Best k: M/B-1.

O(N/B logM/B(N/M)) I/Os

Page 4

Multiway MergeSort

1 + logM/B(x) = logM/B(M/B) + logM/B(x) = logM/B(x ·M/B)

⇓

O(N/B logM/B(N/M)) = O(N/B logM/B(N/B))

Defining n = N/B and m = M/B we get

Multiway MergeSort: O(n logm(n))

Page 5

Multiway QuickSort (DistributionSort)

Multiway splitting according to k splitting elements:

· · ·

· · ·
· · ·
· · ·
· · ·

←

• For I/O-efficient k-way distribution of sorted lists we need:

M ≥ B(k + 1)⇔M/B − 1 ≥ k

• Number of I/Os: 2N/B.

• We would also like to choose the k elements elements such that k is

sufficiently large and the split is even (all subsequences are

sufficiently reduced in size).

Page 6

Finding Partitioning elements

Fact: We can in O(N/B) I/Os choose
√

M/B partitioning elements

such that each subsequence is of size at most 3
2

N√
M/B

.

Since 2 logy(x) = log√y(x), an analysis somewhat similar to that for

multiway mergesort gives that an I/O-optimal sorting algorithm based

on distribution is possible.

Page 7

Selection

Finding splitting elements uses selection (finding i’th element in sorted

order) as a subrutine.

Classic linear time (CPU-wise) algorithm:

1. Split into groups of 5 elements, select median of each.

2. Recursively find the median of this set of selected elements.

3. Split entire input into two parts using this element as pivot.

4. Recursively select in relevant part.

Step 1 and 3 are scans, step 2 recurse on N/5 elements, and none of the

lists made in step 3 are larger than around 7N/10 elements.

As (N/B) is the solution to T (N) = O(N/B) + T (N/5) + T (7N/10),

the algorithm is also linear in terms of I/Os.

Page 8

Sorting Lower Bound

Model of memory:

· · ·
RAM Disk

• Comparison based model: elements may be compared in internal

memory. May be moved, copied, destroyed. Nothing else.

• Assume M ≥ 2B.

• May assume I/Os are block-aligned, and that at start, input

contiguous in lowest positions on disk.

• Adversary argument: adversary gives order of elements in internal

memory (chooses freely among consistent answers).

• Given an execution of a sorting algorithm: St = number of

permutations consistent with knowledge of order after t I/Os.

Page 9

Adversary Strategy

After an I/O, adversary must give new answer, i.e. must give order of

elements currently in RAM.

If number of possible (i.e. consistent with current knowledge) orders is

X , then there exist answer such that

St+1 ≥ St/X.

This is because any single answer induces a subset of the St currently

possible permutations (consisting of the permutations consistent with

this answer), and the X such subsets clearly form a partition of the St

permutations. If no subset has size St/X , the subsets cannot add up to

St permutations.

Adversary chooses answer fulfilling the inequality above.

Page 10

Possible X’s

Type of I/O Read untouched block Read touched block Write

X
(

M
B

)

B!
(

M
B

)

1

Note: at most N/B I/0s on untouched blocks.

From S0 = N ! and St+1 ≥ St/X we get

St ≥
N !

(

M
B

)t
(B!)N/B

Sorting algorithm cannot stop before St = 1. Thus,

1 ≥ N !
(

M
B

)t
(B!)N/B

for any correct algorithm making t I/Os.

Page 11

Lower Bound Computation

1 ≥ N !
(

M
B

)t
(B!)N/B

t log

(

M

B

)

+ (N/B) log(B!) ≥ log(N !)

3tB log(M/B) + N log B ≥ N(log N − 1/ ln 2)

3t ≥ N(log N − 1/ ln 2− log B)

B log(M/B)

t = Ω(N/B logM/B(N/B))

Lemma was used:

a) log(x!) ≥ x(log x − 1/ ln 2)

b) log(x!) ≤ x log x

c) log
`

x

y

´

≤ 3y log(x/y) when x ≥ 2y

Page 12

Proof of Lemma

Lemma:

a) log(x!) ≥ x(log x− 1/ ln 2)

b) log(x!) ≤ x log x

c) log
(

x
y

)

≤ 3y log(x/y) when x ≥ 2y

Stirlings formula: x! =
√

2πx · (x/e)x · (1 + O(1/12x))

Proof (using Stirling):

a) log(x!) ≥ log(
√

2πx) + x(log x− 1/ ln 2) + o(1)

b) log(x!) ≤ log(xx) = x log x

c) log
(

x
y

)

≤ log(xy

(y/e)y) = y(log(x/y) + log(e))

≤ 3y log(x/y) when x ≥ 2y

Page 13

The I/O-Complexity of Sorting

Defining

n = N/B

m = M/B

N/B logM/B(N/B) = sort(N)

we have proven

I/O cost of sorting:

Θ(N/B logM/B(N/B))

= Θ(n logm(n))

= Θ(sort(N))

Page 14

