
DM808 I/O-Efficient Algorithms and Data Structures

Spring 2008

Project 2

Department of Mathematics and Computer Science

University of Southern Denmark

March 14, 2008

In this project, we study the behavior of various sorting algorithms when used in external
memory. More specifically, the goal of the project is to

1. Use different I/O approaches to manipulate streams of data to/from external memory.

2. Develop an efficient algorithm for merging several streams of data to/from external
memory.

3. Implement multi-way Mergesort in external memory.

4. Compare these implementations with the standard Heapsort, Quicksort, and (binary)
Mergesort algorithms.

The project is to be done in groups, preferably of size two.

Standard sorting algorithms

As part of the project, you will need to implement a Heap, as well as Heapsort, Quicksort,
and binary Mergesort. To keep the project down in size, and to increase comparability of
results between different projects, we require you to use the code in the book

Robert Sedgewick: Algorithms in C, Parts 1–4, third edition. Addison-Wesley,
1998, ISBN 0201314525.

This code can be found online at

www.cs.princeton.edu/~rs/Algs3.c1-4/code.txt .

Tasks:

1. Write a program which takes two arguments n and filename and creates a file named
filename containing n random 32-bit integers.

1



2. The implementation of multi-way Mergesort should use the concept of streams. There
should be two different kinds of streams: input streams and output streams. An input
stream should at least support the operations open (open an existing stream for read-
ing), read next (read the next element from the stream), and end of stream (return
true if the end of the stream has been reached). An output stream should support
the operations create (create a new stream), write (write an element to an existing
stream), and close (close the existing stream).

Make implementations of streams, each using a different one of the following four I/O
mechanisms. In all four cases, the actual data of the stream should be stored in a simple
file.

(a) Reading and writing is done one element at a time by the read and write system
calls.

(b) Reading and writing is done by the fread and fwrite functions from the stdio

library. These implement their own (fixed) buffering mechanism.

(c) Reading and writing is handled as in (a), except that now the stream is equipped
with a buffer in internal memory of size B, and whenever the buffer becomes
empty/full, the next B elements are read/written from/to the file.

(d) Reading and writing is handled by mapping the file containing the stream to inter-
nal memory using mmap and scanning the stream as if it was an array in internal
memory.

For each of the implementations (a), (b), and (d), as well as for (c) with various values
of B (including very large ones), perform the experiments of opening k streams and n
times read (write) one element to (from) each of the streams. For each implementation,
do this for a large n and for k = 1, 2, 4, 8, . . . ,Max, where Max is the maximal number of
streams allowed by the operating system. For each of the four stream implementations,
identify their properties and limitations, and try to single out a winner.

3. Implement a d-way merging algorithm that given d sorted input streams creates an
output stream containing the elements from the input streams in sorted order. The
merging should be based on the priority queue structure Heap.

4. Implement a multi-way Mergesort algorithm for sorting 32-bit integers. The program
should take parameters n,m, and d, and should proceed by the following steps.

(a) Read the input file and split it into ⌈n/m⌉ streams, each of size ≤ m. Each stream
that is created should be sorted in internal memory using Quicksort before writing
it to external memory.

(b) Store the references to the ⌈n/m⌉ streams in a queue (if necessary in external
memory).

(c) Repeatedly merge the d (or less) first streams in the queue and put the resulting
stream at the end of the queue until only one stream remains.

5. (Extra task, not mandatory) Implement a version of the multi-way Mergesort algo-
rithm above which tries to parallelize CPU work and I/O in the first phase by restricting
the initial sorted streams to be of length ≤ m/2, and then sorting one stream while
transferring another to/from disk. For this to work, you should use threads.

2



6. Perform experiments with the multi-way Mergesort program, using the best of the
stream implementations from above. The data should be random 32-bit integers. Try
different values for n,m, and d, and identify what are good choices of m, and d for the
various sizes.

7. Implement the standard Heapsort, Quicksort, and binary Mergesort algorithms.

8. For various sizes of data (a few sizes in RAM and a number of sizes larger than main
memory, including at least a factor 10 larger), compare the running time of the best
of your multi-way Mergesort algorithms, the Heapsort algorithm, Quicksort algorithm,
and the binary Mergesort algorithm.

Formalities

Make a report of 5-10 pages describing your implementation and your experiments, on a
level of detail such that others could repeat your experiments themselves. In particular, this
includes reporting the compiler version, compilation options, and machine characteristics (at
least disk, RAM, and cache sizes). Use plots of your experimental data (not tables), and
make sure it is explained what they show. Let the y-axis be time/n log n, and let the x-axis
be logarithmical. Draw conclusions based on the observed data. Code should be given as an
appendix (not included in the page count above).

Deadline:

Wednesday, April 16, 2008.

3


