Transformations

Moving Objects

We need to move our objects in 3D space.

Moving Objects

We need to move our objects in 3D space.

- An object/model (box, car, building, character,...) is defined in one position (often centered around origo). Will be needed in another position in the scene.

Moving Objects

We need to move our objects in 3D space.

- An object/model (box, car, building, character,...) is defined in one position (often centered around origo). Will be needed in another position in the scene.
- Maybe in several places in one scene (town with houses and cars).

Moving Objects

We need to move our objects in 3D space.

- An object/model (box, car, building, character,...) is defined in one position (often centered around origo). Will be needed in another position in the scene.
- Maybe in several places in one scene (town with houses and cars).
- Maybe in different places in different scenes/frames (animation).

Moving Objects

We need to move our objects in 3D space.

- An object/model (box, car, building, character,...) is defined in one position (often centered around origo). Will be needed in another position in the scene.
- Maybe in several places in one scene (town with houses and cars).
- Maybe in different places in different scenes/frames (animation).

Moving Objects

We need to move our objects in 3D space.

- An object/model (box, car, building, character,...) is defined in one position (often centered around origo). Will be needed in another position in the scene.
- Maybe in several places in one scene (town with houses and cars).
- Maybe in different places in different scenes/frames (animation).

Move model \Leftrightarrow move triangles \Leftrightarrow move points (vertices) $\Leftrightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

Translation

Translation

Scaling

Scaling

Rotation

Rotation

Rotation around line through origin:

Rotation

Rotation around line through origin:

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
? \\
? \\
?
\end{array}\right)
$$

Rotation

Simpler case: Rotation around z-axis.

Rotation

Simpler case: Rotation around z-axis.

From formula for rotation in 2D (known from high school):

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \cos \phi-y \sin \phi \\
x \sin \phi+y \cos \phi \\
z
\end{array}\right)
$$

Rotation

Similar: Rotation around x-axis and y-axis.

$$
\begin{aligned}
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
x \\
y \cos \phi-z \sin \phi \\
y \sin \phi+z \cos \phi
\end{array}\right) \\
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
z \sin \phi+x \cos \phi \\
y \\
z \cos \phi-x \sin \phi
\end{array}\right)
\end{aligned}
$$

Euler

Theorem (Euler, 1775): any rotation with axis through origo can be created as three succesive rotations around the three coordinate axes.

The angles of the three coordinate axis rotations are called Euler angles. Using Euler angles to specify generic rotations is often intuitive, but also has drawbacks. We will return to that later.

Matrices

Move model \Leftrightarrow move triangles \Leftrightarrow move points (vertices) $\Leftrightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

Matrices

Move model \Leftrightarrow move triangles \Leftrightarrow move points (vertices) $\Leftrightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ Any matrix induces a (linear) funktion $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$:

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right)
$$

Matrices

Move model \Leftrightarrow move triangles \Leftrightarrow move points (vertices) $\Leftrightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
Any matrix induces a (linear) funktion $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$:

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right)
$$

Recall: Matrix multiplication is associative: $A \cdot(B \cdot C)=(A \cdot B) \cdot C$.

Matrices

Move model \Leftrightarrow move triangles \Leftrightarrow move points (vertices) $\Leftrightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
Any matrix induces a (linear) funktion $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$:

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right)
$$

Recall: Matrix multiplication is associative: $A \cdot(B \cdot C)=(A \cdot B) \cdot C$. Hence:

$$
A \cdot\left(B \cdot\left(C \cdot\left(E \cdot\left(F \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)\right)\right)\right)=((((A \cdot B) \cdot C) \cdot E) \cdot F) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Matrices

Move model \Leftrightarrow move triangles \Leftrightarrow move points (vertices) $\Leftrightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
Any matrix induces a (linear) funktion $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$:

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right)
$$

Recall: Matrix multiplication is associative: $A \cdot(B \cdot C)=(A \cdot B) \cdot C$. Hence:

$$
A \cdot\left(B \cdot\left(C \cdot\left(E \cdot\left(F \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)\right)\right)\right)=((((A \cdot B) \cdot C) \cdot E) \cdot F) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Saves calculations: 3D object $=$ many triangles $=$ many points. All points go through the same sequence of transformations (moves). Calculate the matrix product once.

Matrices

Move model \Leftrightarrow move triangles \Leftrightarrow move points (vertices) $\Leftrightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
Any matrix induces a (linear) funktion $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$:

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right)
$$

Recall: Matrix multiplication is associative: $A \cdot(B \cdot C)=(A \cdot B) \cdot C$. Hence:

$$
A \cdot\left(B \cdot\left(C \cdot\left(E \cdot\left(F \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)\right)\right)\right)=((((A \cdot B) \cdot C) \cdot E) \cdot F) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Saves calculations: 3D object $=$ many triangles $=$ many points. All points go through the same sequence of transformations (moves). Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?

Transformations as Matrices

Transformations as Matrices

- Scaling

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
s_{1} x \\
s_{2} y \\
s_{3} z
\end{array}\right)=\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Transformations as Matrices

- Scaling

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
s_{1} x \\
s_{2} y \\
s_{3} z
\end{array}\right)=\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Rotation angle ϕ around the z-axis

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \cos \phi-y \sin \phi \\
x \sin \phi+y \cos \phi \\
z
\end{array}\right)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Transformations as Matrices

- Scaling

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
s_{1} x \\
s_{2} y \\
s_{3} z
\end{array}\right)=\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Rotation angle ϕ around the z-axis

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \cos \phi-y \sin \phi \\
x \sin \phi+y \cos \phi \\
z
\end{array}\right)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Translation?

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x+x_{0} \\
y+y_{0} \\
z+z_{0}
\end{array}\right)=\left[\begin{array}{ccc}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Transformations as Matrices

- Scaling

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
s_{1} x \\
s_{2} y \\
s_{3} z
\end{array}\right)=\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Rotation angle ϕ around the z-axis

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \cos \phi-y \sin \phi \\
x \sin \phi+y \cos \phi \\
z
\end{array}\right)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Translation?

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x+x_{0} \\
y+y_{0} \\
z+z_{0}
\end{array}\right)=\left[\begin{array}{ccc}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

No. Translation is not linear: $f\left(\overrightarrow{x_{1}}+\overrightarrow{x_{2}}\right) \neq f\left(\overrightarrow{x_{1}}\right)+f\left(\overrightarrow{x_{2}}\right)$.

Homogeneous Coordinates

Go to 4D:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

Homogeneous Coordinates

Go to 4D:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

And back:

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \rightarrow\left(\begin{array}{l}
x / w \\
y / w \\
z / w
\end{array}\right)
$$

Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & x_{0} \\
0 & 1 & 0 & y_{0} \\
0 & 0 & 1 & z_{0} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+x_{0} \\
y+y_{0} \\
z+z_{0} \\
1
\end{array}\right)
$$

Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & x_{0} \\
0 & 1 & 0 & y_{0} \\
0 & 0 & 1 & z_{0} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+x_{0} \\
y+y_{0} \\
z+z_{0} \\
1
\end{array}\right)
$$

All 3×3 matrices are still available (incl. skaling and rotation):

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
1 x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z \\
1
\end{array}\right)
$$

Projection

Projection to screen: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$.

Projection

Projection to screen: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$.

Prespective projection:

Projection

Projection to screen: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$.
Prespective projection:

Expressed as 4×4 matrix multiplication ($d=-$ near):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right] \cdot\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right) \rightarrow\left(\begin{array}{c}
x d / z \\
y d / z \\
d
\end{array}\right)
$$

Transformations in OpenGL

OpenGL uses 4×4-matrices/homogeneous coordinates internally. Matrices are normally created by more intuitive commands:

- glTranslatef(dx,dy,dz)
- glScalef(sx,sy,sz)
- glRotatef (angle,ax,ay,az)

Transformations in OpenGL

OpenGL uses 4×4-matrices/homogeneous coordinates internally. Matrices are normally created by more intuitive commands:

- glTranslatef(dx,dy,dz)
- glScalef(sx,sy,sz)
- glRotatef (angle,ax,ay,az)

Each command generates the corresponding matrix, and right-multiplies it on the current matrix.

So last transformaton specified in code is first applied to vertices.
Cf. the math notation $f(g(h(x)))$ (where h is applied first to x, then g, then f).

Transformations in OpenGL

OpenGL uses 4×4-matrices/homogeneous coordinates internally. Matrices are normally created by more intuitive commands:

- glTranslatef(dx,dy,dz)
- glScalef(sx,sy,sz)
- glRotatef (angle,ax,ay,az)

Each command generates the corresponding matrix, and right-multiplies it on the current matrix.

So last transformaton specified in code is first applied to vertices.
Cf. the math notation $f(g(h(x)))$ (where h is applied first to x, then g, then f).
There is a current matrix for model-view transformations, for projections, and for textures. Each has a stack.

Matrix Stack

Example Program

