External String Sorting:
Faster and Cache-oblivious

Rolf Fagerberg Anna Pagh
Universiy of Southern Denmark I'T University of Copenhagen

Rasmus Pagh
I'T University of Copenhagen

STACS 2006, February 23, 2006

The Problem

Sorting Strings in External Memory

Strings: Ubiquitous data type (word processing,
DBs, WWW, bioinformatics,. . .).

Integers and multi-dimensional data are
special cases.

External Memory: Disks are slow, so minimize |/Os.

/O model

Tertiary Storage

1/0

] RAM
Reality:
Cache3
Cache2 Disk
CPU Reg. Cachel

Models:
C
\ o o f—
A c
M h
(S]

M

<=s030<Z

RAM model (cost: CPU time) I/O model (cost: 1/0s)

Existing Internal Bounds

Internally, string sorting is well solved:

O(Sort(K) + N)

where
K = # strings.
N = total # characters in strings.
Sort(K') = time to sort K elements of alphabet.
For comparison based alphabet: Sort(K) = O(K log K).
For integer alphabet (on word-RAM): Sort(K) = O(K+/loglog K).

Existing External Bounds

Externally, we by analogy could hope to meet the lower bound

Q(Sort(K) + N/B)

where Sort(K) = 1/O cost to sort K elements = 3 log,, 5 17-
Best existing bound (slightly simplified): [Arge et al., STOC'97]
N
O(? - Sort(K;) + B - Sort(K3) + N/B)
1

strings # characters
Short strings K N1
Long strings Ko No

Short strings: at most B characters
Long strings: more than B characters

This Paper

New upper bound:

O(Sort(K) - loglog,,(K)+ N/B)

This Paper

New upper bound:

O(Sort(K) - loglog,,(K) + N/B)

Goal:
O(Sort(K) + N/B)

Existing upper bound:

O(Sort(K) - B+ N/B)

This Paper

New upper bound:

O(Sort(K) - loglog,,(K) + N/B)

Goal:
O(Sort(K) + N/B)

Existing upper bound:

O(Sort(K) - B+ N/B)

B =103, M = 106:
loglog,;(K) > B
K> 106.2(103)

0302)

~ 101

This Paper

Our algorithm:

e Is randomized, with error bound O(1/N¢) for any ¢ (at a
price of constant factor ¢ in complexity bound).

e Finds sorted order (“rank-sorting”) and LCP array of input
strings (no permutation of the strings).

e Works in the cache-oblivious model.

Cache-Oblivious Model

. RAM
Reality:

Cache3

Cache2 Disk
CPU Reg, Cachel

Tertiary Storage

Models:
] 1/0 e 1/0
[¢ ? M c %I M
R a € 5 e
e R R e
e y . '
o M B M i
RAM model /O model Multi-level Cache-oblivious

models model

Cache-Oblivious Model

e Program in the RAM model /0
e Analyze in the I/O model for =

arbitrary B and M

e Optimal off-line cache
replacement strategy M

®® >0OW 0O
< =030

[Frigo, Leiserson, Prokop, Ramachandran, FOCS’99]

Cache-Oblivious Model

e Program in the RAM model

e Analyze in the I/O model for
arbitrary B and M

e Optimal off-line cache
replacement strategy

Advantages:

D SOWwW 0

1/0

=

]
B

M

< =030

e Optimal on arbitrary level = optimal on all levels

e Simplicity of model.
e Portability

e Robustness in multiprocess
systems

L1
C
a
i

<>x

[Frigo, Leiserson, Prokop, Ramachandran, FOCS’99]

Increasing

= access

time

Cache-ODblivious String Sorting

Best existing result:

O(Sort(NV))

by reduction to suffix tree construction algorithm

[Farach, FOCS’97]
[Farach-Colton et al., JACM 00]

New upper bound works in cache-oblivious model:

O(Sort(K) - loglog,,(K)+ N/B)

10

Rank Sorting of Strings

Output:

e Array of pointers to strings in sorted order (rank array).

e Array of lengths of Longest Common Prefix (as well as
branching chars) of neighboring strings in the sorted order
(LCP array).

Cf. suffix arrays.

The essential information in a compressed trie over the strings.

11

Important Application

Improved construction of External String Dictionaries.

|/O-Model [Ferragina, Grossi, STOC’'95]
Cache-Oblivious Model [Brodal, Fagerberg, SODA’06]

Searching for pattern P in these takes O(loggz K + |P|/B) 1/0Os,
which is optimal.

Building these is equivalent to rank sorting (rank array + LCP
array) in the respective models. Hence, our improvements carry
over.

12

Algorithm

Input is binary strings (measured in words of log N bits).

ldea 1:
Repeatedly halve string lengths using hashing.

a b h(ab)

—

...|110100/010110|... ...|100011]...

|dea 2:

Find unordered compressed trie recursively, then
make ordered at the end.

Inspiration: Word-RAM “signature sort” of Andersson et al. [stoc9s)

13

Algorithm

Input is binary strings (measured in words of log N bits).

|dea 1:

Repeatedly halve string lengths using hashing.

a b . h(ab)
...|110100/010110|... ...|100011]...
(c+2)log N
ldea 2: P(no collisions) < (g) . 1/2(et2)log N < 1 /e

Find unordered compressed trie recursively, then
make ordered at the end.

Inspiration: Word-RAM “signature sort” of Andersson et al. [stoc9s)

13

Algorithm

Relationship between LCP for strings and halved strings
(assuming no collisions):

110/010[011[110] _ [111[101]
1110/010/011|101] 1111/010|

R ——— r——

S,; = strings after ¢ halving steps.

Construct unordered compressed trie for .S; from unordered trie

for S;.q:
A
x LA

14

Algorithm

Construct unordered compressed trie for .S; from unordered trie
for S;.1. Don’t recurse on strings of length one.

Ll
D G

In tries, keep only branching nodes and branching characters
(hash values). At most 2 - (# strings) nodes.

Expansion step: batched collecting of (pairs of) branching chars
from halving level i (using sorting as rearrangement routine).

Takes O(Sort(# strings) + (# chars)/B) 1/Os.

15

Algorithm

Finally, make tree ordered (batched collecting of branching
chars from actual strings, using sorting).

Takes O(Sort(K) + N/B) l/Os.

Create rank array and LCP array by creating Euler tour of tree,
list ranking it, and traversing it.

2

Takes O(Sort(K')) 1/Os using existing Euler tour and list ranking
algorithms.

16

Analysis

Space: Geometrically decreasing, O(N) words in total.

Recursion (compression of strings/expansion of tries):

Scanning during compression is geometrically
decreasing, O(N/B) I/Os in total.

Expansion: O(Sort(#strings)) plus scanning per
recursive level. No recursion on strings of length one.

Hence, #strings < #chars. Hence, after log % recursive

levels, remaining levels cost O(Sort(K)) in total due to
geometrical decrease.

O(Sort(K) - log(%) + N/B)

= O(Sort(K) - loglog,,(K) + N/B)

17

Summary

New randomized algorithm for (rank-)sorting of strings in
external memory.

Improves on existing deterministic ones, and is very close to the
goal of O(Sort(K) + N/B).

|/O-Model:

Old: O(Sort(K) - B+ N/B)
New: O(Sort(K) -loglog,,(K)+ N/B)

Cache-Oblivious Model:

Old: O(Sort(IV))
New: O(Sort(K) -loglog,,(K)+ N/B)

18

	The Problem
	I/O model
	Existing Internal Bounds
	Existing External Bounds
	This Paper
	This Paper
	Cache-Oblivious Model
	Cache-Oblivious Model
	Cache-Oblivious String Sorting
	Rank Sorting of Strings
	Important Application
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Analysis
	Summary

