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The Problem

Sorting Strings in External Memory

Strings: Ubiquitous data type (word processing,
DBs, WWW, bioinformatics,. . . ).

Integers and multi-dimensional data are
special cases.

External Memory: Disks are slow, so minimize I/Os.
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Existing Internal Bounds

Internally, string sorting is well solved:

Θ(Sort(K) + N)

where
K = # strings.
N = total # characters in strings.

Sort(K) = time to sort K elements of alphabet.

For comparison based alphabet: Sort(K) = Θ(K log K).
For integer alphabet (on word-RAM): Sort(K) = O(K

√
log log K).
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Existing External Bounds

Externally, we by analogy could hope to meet the lower bound

Ω(Sort(K) + N/B)

where Sort(K) = I/O cost to sort K elements = K
B

logM/B
K
M

.

Best existing bound (slightly simplified): [Arge et al., STOC’97]

O(
N1

K1

· Sort(K1) + B · Sort(K2) + N/B)

# strings # characters

Short strings K1 N1

Long strings K2 N2

Short strings: at most B characters

Long strings: more than B characters
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This Paper

New upper bound:

O(Sort(K) · log logM(K) + N/B)

Goal:
O(Sort(K) + N/B)

Existing upper bound:

O(Sort(K) · B + N/B)

B = 103, M = 106:

log log
M

(K) ≥ B

K ≥ 106·2(103)
≈ 10(10302)
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This Paper

Our algorithm:

• Is randomized, with error bound O(1/N c) for any c (at a
price of constant factor c in complexity bound).

• Finds sorted order (“rank-sorting”) and LCP array of input
strings (no permutation of the strings).

• Works in the cache-oblivious model.
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Cache-Oblivious Model
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Cache-Oblivious Model
• Program in the RAM model

• Analyze in the I/O model for
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• Optimal off-line cache
replacement strategy

[Frigo, Leiserson, Prokop, Ramachandran, FOCS’99]

Advantages:

• Optimal on arbitrary level ⇒ optimal on all levels

• Simplicity of model.

• Portability

• Robustness in multiprocess
systems
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Cache-Oblivious String Sorting

Best existing result:

O(Sort(N))

by reduction to suffix tree construction algorithm
[Farach, FOCS’97]

[Farach-Colton et al., JACM 00]

New upper bound works in cache-oblivious model:

O(Sort(K) · log logM(K) + N/B)
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Rank Sorting of Strings

Output:

• Array of pointers to strings in sorted order (rank array).

• Array of lengths of Longest Common Prefix (as well as
branching chars) of neighboring strings in the sorted order
(LCP array).

Cf. suffix arrays.

The essential information in a compressed trie over the strings.
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Important Application

Improved construction of External String Dictionaries.

I/O-Model [Ferragina, Grossi, STOC’95]

Cache-Oblivious Model [Brodal, Fagerberg, SODA’06]

Searching for pattern P in these takes O(logB K + |P |/B) I/Os,
which is optimal.

Building these is equivalent to rank sorting (rank array + LCP
array) in the respective models. Hence, our improvements carry
over.
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Algorithm

Input is binary strings (measured in words of log N bits).

Idea 1:

Repeatedly halve string lengths using hashing.

. . . 110100 010110 . . .
a b →

. . . 100011 . . .
h(ab)

Idea 2:

Find unordered compressed trie recursively, then
make ordered at the end.

Inspiration: Word-RAM “signature sort” of Andersson et al. [STOC’95]
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(c + 2) log N

P (no collisions) ≤
(

N

2

)

· 1/2(c+2) log N ≤ 1/N cIdea 2:
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Algorithm

Relationship between LCP for strings and halved strings
(assuming no collisions):

110 010 011 101
110 010 011 110 →

111 010
111 101

Si = strings after i halving steps.

Construct unordered compressed trie for Si from unordered trie
for Si+1:

→
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Algorithm

Construct unordered compressed trie for Si from unordered trie
for Si+1. Don’t recurse on strings of length one.

→

In tries, keep only branching nodes and branching characters
(hash values). At most 2 · (# strings) nodes.

Expansion step: batched collecting of (pairs of) branching chars
from halving level i (using sorting as rearrangement routine).

Takes O(Sort(# strings) + (# chars)/B) I/Os.
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Algorithm

Finally, make tree ordered (batched collecting of branching
chars from actual strings, using sorting).

Takes O(Sort(K) + N/B) I/Os.

Create rank array and LCP array by creating Euler tour of tree,
list ranking it, and traversing it.

Takes O(Sort(K)) I/Os using existing Euler tour and list ranking
algorithms.
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Analysis

Space: Geometrically decreasing, O(N) words in total.

Recursion (compression of strings/expansion of tries):

Scanning during compression is geometrically
decreasing, O(N/B) I/Os in total.

Expansion: O(Sort(#strings)) plus scanning per
recursive level. No recursion on strings of length one.
Hence, #strings ≤ #chars. Hence, after log N

K
recursive

levels, remaining levels cost O(Sort(K)) in total due to
geometrical decrease.

O(Sort(K) · log(
N

K
) + N/B)

= O(Sort(K) · log logM(K) + N/B)
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Summary

New randomized algorithm for (rank-)sorting of strings in
external memory.

Improves on existing deterministic ones, and is very close to the
goal of O(Sort(K) + N/B).

I/O-Model:

Old: O(Sort(K) · B + N/B)

New: O(Sort(K) · log logM(K) + N/B)

Cache-Oblivious Model:

Old: O(Sort(N))

New: O(Sort(K) · log logM(K) + N/B)
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