
DM842 Computer Game Programming

Rolf Fagerberg and Marco Chiarandini

Fall 2017



Why Computer Game Programming?

I Fun, attraction, curiosity

I Career goal

I Great display of use of many Computer Science subjects and
courses:

I Programming
I Algorithms and data structures
I Linear algebra and other math
I Numerical analysis
I Finite Automatons
I Computer architecture



Computer Game Development

I Large game company (100 persons):
I Game programmers: 30–40
I Game artists, model designers: 30–40
I Game level designers, testers: 10–30
I Game designers: 2
I Game producers: 4
I Business and management persons: 5–10

I Casual game company (1–3 persons):
I Each person has many roles.

Computer games in Computer Science: the study of

Methods and principles of game programming



Computer Game Development

I Large game company (100 persons):
I Game programmers: 30–40
I Game artists, model designers: 30–40
I Game level designers, testers: 10–30
I Game designers: 2
I Game producers: 4
I Business and management persons: 5–10

I Casual game company (1–3 persons):
I Each person has many roles.

Computer games in Computer Science: the study of

Methods and principles of game programming



Computer Game Development

I Large game company (100 persons):
I Game programmers: 30–40
I Game artists, model designers: 30–40
I Game level designers, testers: 10–30
I Game designers: 2
I Game producers: 4
I Business and management persons: 5–10

I Casual game company (1–3 persons):
I Each person has many roles.

Computer games in Computer Science: the study of

Methods and principles of game programming



Subjects covered in DM842

1. The graphics pipeline:
I 3D geometry (transformation, projection)
I Shading (color, textures, lights, lighting models)
I Image based techniques (skyboxes, billboards,. . . )
I Polygonal techniques (culling, level of detail)

2. Game AI (path finding, chasing and evading, fighting, flocking,
decision making, game trees,. . . )

3. Collision detection

4. Rigid body physics simulation



Subjects NOT covered

I Graphics APIs (self-study, is included in textbook)

I Software engineering, testing

I Game engines

← NOT used in course

I Level editors, scripting

I Modeling

I Artwork

I Animation

I Sound, music

I Gameplay, narrative, study of genres



Subjects NOT covered

I Graphics APIs (self-study, is included in textbook)

I Software engineering, testing

I Game engines ← NOT used in course

I Level editors, scripting

I Modeling

I Artwork

I Animation

I Sound, music

I Gameplay, narrative, study of genres



Formal Course Description

Prerequisites: Algorithms and data structures (DM507), pro-
gramming proficiency, knowledge of vectors and
matrices

Literature: Textbooks

Evaluation: Implementation projects (pass/fail), oral exam
(7-scale)

Credits: 10 ECTS

Course language: Danish and/or English



Project

Small project (in groups of 2–3) must be passed to attend the oral exam:

Implement a 3D visualization of a (very) simple game, in-
cluding some AI and physics simulation.

Programming language and graphics API of own choice. Must run on
either Imada machines (Linux), or a recent Windows.

Some suggestions for API and language:

I C++ and OpenGL

← choice aligned with textbook

I Java and OpenGL-binding (e.g. JOGL)

I C++/C# and DirectX



Project

Small project (in groups of 2–3) must be passed to attend the oral exam:

Implement a 3D visualization of a (very) simple game, in-
cluding some AI and physics simulation.

Programming language and graphics API of own choice. Must run on
either Imada machines (Linux), or a recent Windows.

Some suggestions for API and language:

I C++ and OpenGL ← choice aligned with textbook

I Java and OpenGL-binding (e.g. JOGL)

I C++/C# and DirectX



Disclaimer

I Includes reading quite a number of pages

I Includes actual (but fairly simple) math

I Includes programming

I Includes work on issues not taught explicitly in course (graphics
APIs)

Rather heavy - but fun - workload.



Textbook for Graphics Part

Computer Graphics Through OpenGL, 2nd edition. Sumanta
Guha, Chapman and Hall/CRC. 2014.

I University level.

I Right coverage of subjects.

I Integrates theory and OpenGL.

I Lots of figures, code, examples, exercises.

I Instructions for installing OpenGL on Ubuntu, Mac, and Win on its
website.

I Uses the “legacy” features of OpenGL, for pedagogical reasons.
Coverage of the OpenGL 4.3 (shaders) in the last chapters (20 and
21).

Suggestion: run OpenGL in “compatibility mode” (see book and website
for instructions) for first part of th course, change to shader based in
later parts of the course.



Other Resources

I The OpenGL site at www.khronos.org (in particular their Wiki).

I The OpenGL Programming Guide (the “Red Book”) for a clean
explanation of modern shader-based OpenGl.

I Lots on the web.

I Lots of other books.

For the last two points: Beware which of the legacy/deprecated vs.
modern (shaders) OpenGL main styles is addressed.


