DM842 Computer Game Programming

Rolf Fagerberg and Marco Chiarandini

Fall 2017



Why Computer Game Programming?

» Fun, attraction, curiosity

» Career goal

» Great display of use of many Computer Science subjects and
courses:

>

vyvyvVYVvYy

Programming

Algorithms and data structures
Linear algebra and other math
Numerical analysis

Finite Automatons

Computer architecture



Computer Game Development

» Large game company (100 persons):

» Game programmers: 30-40
Game artists, model designers: 30—40
Game level designers, testers: 10-30
Game designers: 2
Game producers: 4
Business and management persons: 5-10

vVYy VvV VvVy



Computer Game Development

» Large game company (100 persons):

» Game programmers: 30-40
Game artists, model designers: 30—40
Game level designers, testers: 10-30
Game designers: 2
Game producers: 4
Business and management persons: 5-10

vVYy VvV VvVy

» Casual game company (1-3 persons):
» Each person has many roles.



Computer Game Development

» Large game company (100 persons):

» Game programmers: 30-40
Game artists, model designers: 30—40
Game level designers, testers: 10-30
Game designers: 2
Game producers: 4
Business and management persons: 5-10

vVYy VvV VvVy

» Casual game company (1-3 persons):
» Each person has many roles.

Computer games in Computer Science: the study of

Methods and principles of game programming




Subjects covered in DM842

1. The graphics pipeline:

» 3D geometry (transformation, projection)
Shading (color, textures, lights, lighting models)
Image based techniques (skyboxes, billboards,. . .)
Polygonal techniques (culling, level of detail)

vvyy

2. Game Al (path finding, chasing and evading, fighting, flocking,
decision making, game trees,...)

3. Collision detection

4. Rigid body physics simulation




Subjects NOT covered

Graphics APlIs (self-study, is included in textbook)
Software engineering, testing

Game engines

Level editors, scripting

Modeling

Artwork

Animation

Sound, music

vV VvV vV vV vV Vv VY

Gameplay, narrative, study of genres



Subjects NOT covered

» Graphics APIs (self-study, is included in textbook)
» Software engineering, testing

» Game engines < NOT used in course

> Level editors, scripting

» Modeling

> Artwork

» Animation

» Sound, music

» Gameplay, narrative, study of genres



Formal Course Description

Prerequisites:

Literature:

Evaluation:

Credits:

Course language:

Algorithms and data structures (DM507), pro-
gramming proficiency, knowledge of vectors and
matrices

Textbooks

Implementation projects (pass/fail), oral exam
(7-scale)

10 ECTS
Danish and/or English



Project

Small project (in groups of 2—-3) must be passed to attend the oral exam:

Implement a 3D visualization of a (very) simple game, in-
cluding some Al and physics simulation.

Programming language and graphics API of own choice. Must run on
either Imada machines (Linux), or a recent Windows.

Some suggestions for APl and language:

» C++ and OpenGL
» Java and OpenGL-binding (e.g. JOGL)
» C++/C# and DirectX



Project

Small project (in groups of 2—-3) must be passed to attend the oral exam:

Implement a 3D visualization of a (very) simple game, in-
cluding some Al and physics simulation.

Programming language and graphics API of own choice. Must run on
either Imada machines (Linux), or a recent Windows.

Some suggestions for APl and language:

» C++ and OpenGL « choice aligned with textbook
» Java and OpenGL-binding (e.g. JOGL)
» C++/C# and DirectX



Disclaimer

Includes reading quite a number of pages
Includes actual (but fairly simple) math

Includes programming

vV v vy

Includes work on issues not taught explicitly in course (graphics
APIs)

Rather heavy - but fun - workload.



Textbook for Graphics Part

vV v v v Y

Computer Graphics Through OpenGL, 2nd edition. Sumanta
Guha, Chapman and Hall/CRC. 2014.

University level.

Right coverage of subjects.

Integrates theory and OpenGL.

Lots of figures, code, examples, exercises.

Instructions for installing OpenGL on Ubuntu, Mac, and Win on its
website.

Uses the “legacy” features of OpenGL, for pedagogical reasons.
Coverage of the OpenGL 4.3 (shaders) in the last chapters (20 and
21).

Suggestion: run OpenGL in “compatibility mode” (see book and website
for instructions) for first part of th course, change to shader based in
later parts of the course.



Other Resources

v

The OpenGL site at www.khronos.org (in particular their Wiki).

The OpenGL Programming Guide (the “Red Book") for a clean
explanation of modern shader-based OpenGl.

v

v

Lots on the web.
Lots of other books.

v

For the last two points: Beware which of the legacy/deprecated vs.
modern (shaders) OpenGL main styles is addressed.



