
DM842

Computer Game Programming: AI

Lecture 1
AI for Games

Movement Behaviors

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

2

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

3

Practicalities
Introduction
Representations
Kinematic MovementIntroduction

Web page

Schedule

Book: Artificial Intelligence for Games (2nd Edition)
The textbook is oriented towards real-life Game AI practice.

Book structure (850 pages):
Ch. 1-2: Intro to Game AI

Ch. 3-8: Game AI techniques

Ch. 9-11: Surrounding issues
(AI execution scheduling, gameworld interfacing, tools and content
creation).

Ch. 12-13: Game AI technology choices by game genre.

4

Practicalities
Introduction
Representations
Kinematic MovementContents

Movement algorithms

3D Movement

Pathfinding

Decision making: Decision trees,
State Machine, Behavior Trees

Behavior Trees and Fuzzy Logic

Goal-Oriented Behavior

Tactical and Strategic AI

Board Games AI

Bunch of different techniques

Often a bit limited in depth

Quite a number of pages to read

Best if simultaneously trying
things out in your projects

5

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

6

Practicalities
Introduction
Representations
Kinematic MovementClassic AI

AI = make machines behave like human beings when solving “fuzzy
problems”.

Classic AI:

Philosophical motivation: What is intelligence, what is thinking and
decision making?

Psychological motivation: How does the brain work?

Engineering motivation: Make machine carry out such tasks.

Game AI: Related to third point. Happy to draw on results from AI research,
but goal is solely behavior generation in computer games.

7

Practicalities
Introduction
Representations
Kinematic MovementAcademic AI Eras

Prehistoric era (-1950): Philosophic questions, mechanical novelty
gadgets, what produces thought? Mechanical Turk.

Symbolic era (1950-1985): symbolic representations of knowledge +
reasoning (search) algorithms working on symbols.
Examples: expert systems, decision trees, state machines, path finding,
steering.

Natural era (1985-): techniques inspired by biological processes.
Examples: neural networks, genetic algorithms, ant colony optimization.

Philosophical schools:
weak AI hypothesis: assertion that machines could possibly act intelligently
(or, perhaps better, act as if they were intelligent)
strong AI hypothesis: assertion that machines that do so are actually thinking
(as opposed to simulating thinking)

8

Practicalities
Introduction
Representations
Kinematic MovementAI approach

Bottom up approach:
Agent-based models with emergent behavior.
Movement and individual decision making are the two basic elements.
(eg: computational intelligence, swarm intelligence)

Top down approach:
Non agent-based models in which everything is simulated and optimized and
then each single character’s actions are decided.

9

Practicalities
Introduction
Representations
Kinematic MovementAI in Games

Author: Natural techniques currently more fashionable, but not more
successful than symbolic. Game AI techniques often are symbolic.

No AI technique works for everything ("knowledge vs. search trade-off"). In
games, simple is often good.

More ad hoc techniques. Both bottom up and top down.

10

Practicalities
Introduction
Representations
Kinematic MovementComputer Game Genres

Different game genres have different AI requirements.

11

Practicalities
Introduction
Representations
Kinematic MovementAI in Games, examples

Pacman (1979) first game using AI

Opponent controllers, enemy characters,
computer controlled chars.

Used a finite state machine

Warcraft 1994
Path finding

The Sims 2000, Creatures 1997
Neural network brain for creatures

Present:
Simple AI

Bots in first person games and simulators, advanced AI

Real-time strategy (RTS) games, advanced AI

Sport and driving games still pose challenges (dynamic path finding)

Role-playing games (RPG) conversation still challenging
12

Practicalities
Introduction
Representations
Kinematic MovementTasks of Computer Chars

Actions:
attacking, standing still, hiding, exploring, patrolling, ...

Movement:
going to the player before the attack

avoiding obstacles on the way

a lot done by animation but still need to decide what to do.

Decision making: deciding which action at each moment of the game.
(then movement AI + animation technology)

Strategy:
coordinate a team while still leaving to each individual its own decision
making and movement

13

Practicalities
Introduction
Representations
Kinematic MovementNeeds for AI in Games

Three main areas:

Movement (single characters)

Decision making (where? short term, single character behavior)

Strategic AI (long term, group behavior)

Not all games have all areas (eg. chess vs. platform game).

Associated issues:

Gameworld interface (input to AI)

Execution/scheduling of AI

Scripting, content creation

Animation (6= movement) and Physics (not in book)

15

Practicalities
Introduction
Representations
Kinematic MovementThe complexity fallacy

Fallacy: More complex AI gives more convincing behavior.

Often, the right simple technique (or combination of simple techniques) looks
good.

Complex, intricate techniques often look bad.

“The best AI programmers are those who can use a very simple technique to
give the illusion of complexity.”

16

Practicalities
Introduction
Representations
Kinematic MovementThe Perception Window

Most non-player characters (NPC) are met briefly. Adapt AI complexity to
players exposure to the character. Advanced AI will look random (so simply
use randomization).

Change of behavior is very noticeable (more than behavior itself), and should
correspond to relevant events (like being seen).

17

Practicalities
Introduction
Representations
Kinematic MovementAlgorithms, Hacks and Heuristics

In this part of the course (and in the book) we focuses on general techniques
and algorithms for generating behavior and representations for interfacing.

However, real Game AI often employs ad hoc hacks and heuristics.

In games, perceived behavior, not underlying technique, is what matters.

Behaviorist approach: we do not study the principles behind human behavior
(as academic AI does), but try to emulate it sufficiently well.
And if an ad hoc method or simple emotional animation will do it, then fine.

18

Practicalities
Introduction
Representations
Kinematic MovementEfficiency

AI is done on CPU.
Trend: more tasks taken over by GPU, hence more time left for AI in CPU.
Could be 10-50% of total time cycles.

Heavy AI calculations (eg path finding for 1000 chars) can be distributed
(scheduled) over many frames.

Parallelism: easiest when there are several NPCs.

Branch-prediction and, above all, cache-efficiency may impact considerably
performance

PC development: should run on varied hardware. Often hard to implement AI
that scales with changing hardware (without impacting gameplay). So
developers target AI to the minimum hardware requirements. Scaling may be
done by reducing number of NPCs.

Console development: development platform is often PCs, so many small
tweaks during development is harder.

19

Practicalities
Introduction
Representations
Kinematic MovementThe AI Engine

Reuse of code saves programming time.

Content creation takes up the bulk of a game development time. Tools
for this are necessary.

 For AI (as for graphics), generic (in-house) engines are now common.

 Interfacing

AI knowledge representation forms needs to be decided upon and put into
level editing tools. (More details in Ch. 11.)

20

Practicalities
Introduction
Representations
Kinematic MovementSummary

21

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

22

Practicalities
Introduction
Representations
Kinematic MovementMovement

Movement of characters around the level (not about movement of faces)

Input: geometric data about the state of the world + current position of
character + other physical properties

Output: geometric data representing movement (velocity, accelerations)

For many games, characters have only two states: stationary + running

Running:

Kinematic movement: constant velocity, no acceleration nor slow down.

Steering behavior: dynamic movement with accelerations. Takes into
account current velocity of the character and outputs acceleration (eg,
Craig Reynolds, flocking)

23

Practicalities
Introduction
Representations
Kinematic MovementStatic Representations

Characters represented as points, center of mass (collision detection, obstacle
avoidance need also size but mostly handled outside of movement
algorithms).

In 2D:
x , z orthonormal basis of 2D space
2D movement takes place in x , z
(x , z) coordinates

Orientation value θ:
counterclockwise angle, in radiants
from positive z-axis� �
struct Static:
position # a 2D vector
orientation # single floating point value� �

then rendered in 3D (θ determines the rotation matrix)
24

Practicalities
Introduction
Representations
Kinematic MovementStatic Representations

In 3D movement is more complicated: orientation implies 3 parameters

Full 3D may be needed in flight simulators

But often one dim is gravity and rotation about the upright direction is
enough, the rest can be handled by animations)

Hybrid model:

In 2 1
2D

full 3D position (includes possibility for jumps)

orientation as a single value

huge simplification in math in change of a small loss in flexibility

25

Practicalities
Introduction
Representations
Kinematic MovementOrientation in Vector Form

from angle θ to unit length vector in the direction that the character is facing

θ =

[
sinθ
cosθ

]
=

[
x
z

]

26

Practicalities
Introduction
Representations
Kinematic MovementKinematic Representations

Kinematic algorithms:
position + orientation + velocity

2D 2 1
2D

linear velocity v vx , vz components vx , vy , vz components
angular velocity θ′ π/s π/s

(scalar, tangential to radius)� �
struct Kinematic:
position # 2 or 3D vector
orientation # single floating point value
velocity # 2 or 3D vector
rotation # single floating point value� �

Steering algorithms:
return linear acceleration a and angular acceleration θ′′ that modify
Kinematic:� �
struct SteeringOutput:
linear # 2D or 3D vector
angular # single floating point value� �

27

Practicalities
Introduction
Representations
Kinematic MovementIndependent facing

Characters mostly face the direction of movement. Hence steering algs often
ignore rotation. To avoid abrupt changes orientation is moved proportionally
towards moving direction:

28

Practicalities
Introduction
Representations
Kinematic MovementKinematic Representations

Updates (classical mechanics)

v(t) = r′(t) a(t) = r′′(t)

r = vt + 1
2 at2 + r0

θ = θ′t + 1
2θ

′′t2 + θ0

� �
struct Kinematic:
position
orientation
velocity
rotation
def update(steering, time):

position += velocity * time + 0.5 *
steering.linear * time * time

orientation += rotation * time + 0.5
* steering.angular * time *

time
velocity += steering.linear * time
rotation += steering.angular * time� �

v = at + v0
θ′ = θ′′t + θ′0

� �
struct Kinematic:
position
orientation
velocity
rotation
def update(steering, time):

position += velocity * time
orientation += rotation * time
velocity += steering.linear * time
rotation += steering.angular * time� �

Velocities expressed as m/s thus support for variable frame rate.
Eg.: If v = 1m/s and the frame duration is 20ms è x = 20mm 29

Practicalities
Introduction
Representations
Kinematic MovementNetwon’s Physics

Accelerations are determined by forces and inertia (F = ma)

To model object inertia:

object’s mass for the linear inertia

moment of inertia (or inertia tensor in 3D) for angular acceleration.

We could extend char data and movement algorithms with these. Mostly
needed for physics games, eg, driving game.

In most of the cases steering algorithms are defined with accelerations.

Actuation is a post-processing step that takes care of computing forces after
steering has been decided to produce the desired change in velocity (poses
feasibility problems)

30

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

31

Practicalities
Introduction
Representations
Kinematic MovementKinematic Movement Algorithms

Input: static data
Output: velocity (often: on/off full speed or being stationary + target

direction)

From v we calculate orientation using trigonometry:

tan θ =
sin θ
cos θ

θ = arctan(vx/vz)

� �
def getNewOrientation(currentOrientation, velocity)

:
if velocity.length() > 0:

return return atan2(velocity.x, velocity.z)
else: return currentOrientation� �

32

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

33

Practicalities
Introduction
Representations
Kinematic MovementSeeking

Input: character’s and target’s static data
Output: velocity along direction to target� �
struct Static:

position
orientation� �

� �
struct KinematicSteeringOutput:

velocity
rotation� �� �

class KinematicSeek:
character # static data char.
target # static data target
maxSpeed

def getSteering():
steering = new KinematicSteeringOutput()
steering.velocity = target.position - character.position # direction
steering.velocity.normalize()
steering.velocity *= maxSpeed
character.orientation = getNewOrientation(character.orientation, steering.

velocity)
steering.rotation = 0
return steering� �

Performance in time and memory? O(1)
34

Practicalities
Introduction
Representations
Kinematic Movement

getNewOrientation can be taken out

flee mode:� �
steering.velocity = character.position - target.

position� �
what happens at arrival? wiggling back and forth while it should be
stationary

use large radius of satisfaction to target

use a range of movement speeds, and slow the character down as it
reaches its target

35

Practicalities
Introduction
Representations
Kinematic Movement

� �
class KinematicArrive:

character # static data
target # static data
maxSpeed
radius # satisfaction radius
timeToTarget = 0.25 # time to target constant
def getSteering():

steering = new KinematicSteeringOutput()
steering.velocity = target.position - character.position # direction
if steering.velocity.length() < radius:

return None
steering.velocity /= timeToTarget # set velocity wrt time to target
if steering.velocity.length() > maxSpeed:

steering.velocity.normalize()
steering.velocity *= maxSpeed

character.orientation = getNewOrientation(character.orientation, steering.
velocity)

steering.rotation = 0
return steering� �

36

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

37

Practicalities
Introduction
Representations
Kinematic MovementWandering

A kinematic wander behavior moves the character in the direction of the
character’s current orientation with maximum speed.
Orientation is changed by steering.� �

class KinematicWander:
character
maxSpeed
maxRotation # speed
def getSteering():

steering = new KinematicSteeringOutput()
steering.velocity = maxSpeed * character.orientation.

asVector()
steering.rotation = (random(0,1)-random(0,1)) *

maxRotation
return steering� �

Demo

38

Practicalities
Introduction
Representations
Kinematic MovementOutline

1. Practicalities

2. Introduction

3. Representations

4. Kinematic Movement
Seeking
Wandering

39

	Practicalities
	Introduction
	Representations
	Kinematic Movement
	Seeking
	Wandering

