
DM842

Computer Game Programming: AI

Lecture 2

Movement Behaviors

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

2

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

3

Steering Behaviors
Delegated SteeringSteering � Intro

movement algorithms that include accelerations (linear and angular)

present in driving games but more and more in all games.

range of di�erent behaviors obtained by combination of fundamental
behaviors: eg. seek and �ee, arrive, and align.

each behavior does a single thing, more complex behaviors obtained by
higher level code

often organized in pairs, behavior and its opposite (eg, seek and �ee)

Input: kinematic of the moving character + target information
(moving char in chasing, representation of the geometry of the world in
obstacle avoidance, path in path following behavior; group of targets in
�ocking � move toward the average position of the �ock.)

Output: steering, ie, accelerations

4

Steering Behaviors
Delegated SteeringVariable Matching

Match one or more of the elements of the character's kinematic to a
single target kinematic (additional properties that control how the
matching is performed)

To avoid incongruencies: individual matching algorithms for each
element and then right combination later. (algorithms for combinations
resolve con�icts)

5

Steering Behaviors
Delegated SteeringSeek and Flee

Seek tries to match the position of the character with the position of the
target. Accelerate as much as possible in the direction of the target.� �
struct Kinematic:
position
orientation
velocity
rotation

def update(steering, maxSpeed, time):
position += velocity * time
orientation += rotation * time
velocity += steering.linear * time
orientation += steering.angular *

time
if velocity.length() > maxSpeed:
velocity.normalize()
velocity *= maxSpeed # trim back� �� �

struct SteeringOutput
linear # accleration
angular # acceleration� �

� �
class Seek:
character # kinematic data
target # kinematic data
maxAcceleration

def getSteering():
steering = new SteeringOutput()
steering.linear = target.position -

character.position #
change here for
�ee

steering.linear.normalize()
steering.linear *= maxAcceleration
steering.angular = 0
return steering� �

Demo

Note, orientation removed: like before or by matching or proportional
6

Steering Behaviors
Delegated SteeringArrive

Seek always moves to target with max acceleration. If target is standing it
will orbit around it. Hence we need to slow down and arrive with zero speed.

Two radii:

arrival radius, as before, lets the character get near enough to the target
without letting small errors keep it in motion.

slowing-down radius, much larger. max speed at radius and then
interpolated by distance to target

Direction as before
Acceleration dependent on the desired velocity to reach in a �xed time (0.1 s)

7

Arrive

� �
class Arrive:

character # kinematic data
target
maxAcceleration
maxSpeed
targetRadius
slowRadius
timeToTarget = 0.1 # time to arrive at target
def getSteering(target):

steering = new SteeringOutput()
direction = target.position - character.position
distance = direction.length()
if distance < targetRadius

return None
if distance > slowRadius:

targetSpeed = maxSpeed
else:

targetSpeed = maxSpeed * distance / slowRadius
targetVelocity = direction
targetVelocity.normalize()
targetVelocity *= targetSpeed
steering.linear = targetVelocity - character.velocity
steering.linear /= timeToTarget
if steering.linear.length() > maxAcceleration:

steering.linear.normalize()
steering.linear *= maxAcceleration

steering.angular = 0
return steering� �

Steering Behaviors
Delegated SteeringAlign

Match the orientation of the character with that of the target
(just turn, no linear acceleration). Angular version of Arrive.
Issue:
avoid rotating in the wrong direction because of the angular wrap

convert the result into the range (−π, π) radians by adding or subtracting
m · 2π

9

Align

� �
class Align:

character
target
maxAngularAcceleration
maxRotation
targetRadius
slowRadius
timeToTarget = 0.1
def getSteering(target):

steering = new SteeringOutput()
rotation = target.orientation - character.orientation
rotation = mapToRange(rotation) #Maps to range (−π, π)
rotationSize = abs(rotation)
if rotationSize < targetRadius #radius is just a number here

return None<
if rotationSize > slowRadius:

targetRotation = maxRotation
else:

targetRotation = maxRotation * rotationSize / slowRadius
targetRotation *= rotation / rotationSize #to get correct direction
steering.angular = targetRotation - character.rotation
steering.angular /= timeToTarget
angularAcceleration = abs(steering.angular)
if angularAcceleration > maxAngularAcceleration:

steering.angular /= angularAcceleration
steering.angular *= maxAngularAcceleration

steering.linear = 0
return steering� �

Steering Behaviors
Delegated SteeringVelocity Matching

So far we matched positions

Matching velocity becomes relevant when combined with other
behaviors, eg. �ocking steering behavior

Simpli�ed version of arrive� �
class VelocityMatch:

character
target
maxAcceleration
timeToTarget = 0.1
def getSteering(target):

steering = new SteeringOutput()
steering.linear = (target.velocity - character.velocity) / timeToTarget
if steering.linear.length() > maxAcceleration:

steering.linear.normalize()
steering.linear *= maxAcceleration

steering.angular = 0
return steering� �

11

Steering Behaviors
Delegated SteeringDelegated Behaviors

we saw the building blocks: seek and �ee, arrive, align and velocity
matching

next we will see delegated behaviors: calculate a target, either position
or orientation, and delegate the steering

author advocates polymorphic style of programming (inheritance,
subclasses) to avoid duplicating code

Pursue and evade, Face, Looking where you are going, Wander, Path
following

12

Steering Behaviors
Delegated SteeringSummary

Kinematic Movement

Seek

Wandering

Steering Movement

Variable Matching

Seek and Flee

Arrive

Align

Velocity Matching

13

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

14

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

15

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

16

Steering Behaviors
Delegated SteeringPursue and Evade

So far we chased based on position, but if target is far away it would look
awkward:

need to predict where it will be at some time in the future.

Craig Reynolds's original approach is simple: we assume the target will
continue moving with the same velocity it currently has.

new position used for std seek behavior

use max time parameter to limit the prediction

17

Steering Behaviors
Delegated SteeringPursue and Evade

� �
class Pursue (Seek): # derived from Seek

maxPrediction # max lookahed time
target
... Other data is derived from the superclass ...
def getSteering():

direction = target.position - character.position
distance = direction.length()
speed = character.velocity.length()
if speed <= distance / maxPrediction:

prediction = maxPrediction
else:

prediction = distance / speed
Seek.target = new explicitTarget
Seek.target.position = target.position + target.velocity * prediction
return Seek.getSteering()� �

For evade, call Flee.getSteering() instead of Seek.getSteering()
If overshooting (character much faster than target), then call Arrive instead

18

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

19

Steering Behaviors
Delegated SteeringFace

Look at target.
Calculates the target orientation �rst and delegate to Align the rotation� �
class Face (Align):

target
... Other data is derived from the superclass ...
def getSteering():

direction = target.position - character.position
if direction.length() == 0: return
Align.target = new explicitTarget
Align.target.orientation = atan2(direction.x, direction.z) #vector to angle
return Align.getSteering()� �

20

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

21

Steering Behaviors
Delegated SteeringLooking Where You're Going

We would like the character to face in the direction it is moving

In the kinematic movement algorithms we set it directly.

In steering, we can give the character angular acceleration

similar to Face

� �
class LookWhereYoureGoing (Align):

... Other data is derived from the superclass ...
def getSteering():

if character.velocity.length() == 0: return
target.orientation = atan2(character.velocity.x, character.velocity.z)
return Align.getSteering()� �

22

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

23

Steering Behaviors
Delegated SteeringWander

Move aimlessly around

In kinematic wander behavior, we perturbed the direction by a random
amount. This makes the rotation of the character erratic and twitching.

add an extra layer, making the orientation of the character indirectly
reliant on the random number generator.

circle with randomly jumping target in front of character + Face

target will twitch on the circle, but the character's orientation will
change smoothly.

24

Steering Behaviors
Delegated SteeringWander

� �
class Wander (Face):

wanderOffset # forward o�set of the wander
wanderRadius
wanderRate # max rate of change of the orientation
wanderOrientation # current orientation
maxAcceleration
... Other data is derived from the superclass ...
def getSteering():

wanderOrientation += (random(0,1)-random(0,1)) * wanderRate
targetOrientation = wanderOrientation + character.orientation
target = character.position + wanderOffset * character.orientation.asVector() #

center of the wander circle
target += wanderRadius * targetOrientation.asVector()
steering = Face.getSteering()
steering.linear = maxAcceleration * character.orientation.asVector() # full

acceleration towards
return steering� �

25

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

26

Steering Behaviors
Delegated SteeringPath Following

Takes a whole path (line segment or curve splines) as target (eg, a
patrol rute). Resulting behavior: move along the path in one direction

Delegated:

1. �nd nearest point along the path. (may be complex)

2. select a target at a �xed distance along the path.

3. Seek

27

Steering Behaviors
Delegated Steering

Predictive path following

smoother behavior but may short-cut the path

28

Steering Behaviors
Delegated SteeringPath Following

� �
class FollowPath (Seek):

path # Holds the path to follow
pathOffset # distance along the path
currentParam # current position on

path

... Other data from superclass ...
def getSteering():

currentParam = path.getParam(
character.position, currentPos
)

targetParam = currentParam +
pathOffset

target.position = path.getPosition(
targetParam)

return Seek.getSteering()� �

� �
class FollowPath (Seek):

path # Holds the path to follow
pathOffset # distance along the path
currentParam # current position on

path
predictTime = 0.1 # prediction time
... Other data from superclass ...
def getSteering():

futurePos = character.position +
character.velocity *
predictTime

currentParam = path.getParam(
futurePos, currentPos)

targetParam = currentParam +
pathOffset

target.position = path.getPosition(
targetParam)

return Seek.getSteering()� �

29

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

30

Steering Behaviors
Delegated SteeringSeparation

keep the characters from getting too close and being crowded.

if the behavior detects another character closer than some threshold
then evade with strength depending on distance
else zero.

linear:� �
strength = maxAcceleration * (threshold - distance) / threshold� �
inverse square:� �
strength = min(k / (distance * distance), maxAcceleration) # k is a constant� �

31

Steering Behaviors
Delegated SteeringSeparation

� �
class Separation:

character # kinematic data
targets # list of potential targets
threshold
decayCoefficient
maxAcceleration
def getSteering():

steering = new Steering
for target in targets:

direction = character.position - target.position
distance = direction.length()
if distance < threshold:

strength = min(decayCoefficient / (distance * distance), maxAcceleration)
direction.normalize()
steering.linear += strength * direction

return steering� �

32

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

33

Steering Behaviors
Delegated SteeringCollision Avoidance

with large numbers of characters moving around: only engage if the
target is within a cone in front of the character.

average position and speed of all characters in the cone and evade that
target. Alternatively, closest character in the cone.

Cone checked by dot product. Note that a • b = |a||b| cos(θ), where θ is the
angle between the two vectors. coneThreshold is cosine of half the cone
angle.� �
if orientation.asVector() . direction > coneThreshold:
do the evasion
else:
return no steering� �

34

Steering Behaviors
Delegated SteeringCollision Avoidance

Two problematic situations:

35

Steering Behaviors
Delegated SteeringCollision Avoidance

Closest approach: work out the closest predicted distance objects will have on
the basis of current speed and compare against some threshold radius.

r = r t − r c

v = v t − v c

t = − r · v
|v |2

position at time of closest approach:

r
′
c = r c + v ct

r
′
t = r t + v tt

With group of chars: search for the character whose closest approach will
occur �rst and react to this character only.

36

Steering Behaviors
Delegated SteeringOutline

1. Steering Behaviors

2. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

37

Steering Behaviors
Delegated SteeringObstacle and Wall Avoidance

So far targets are spherical and center of mass

More complex obstacles, eg, walls, cannot be easily represented in this
way.

cast one or more rays out in the direction of the motion.

If these rays collide with an obstacle,
then create a target to avoid the collision, and do seek on this target.

rays extend to a short distance ahead corresponding to a few seconds of
movement.

38

Steering Behaviors
Delegated Steering

� �
class ObstacleAvoidance (Seek):

collisionDetector
avoidDistance
lookahead
... Other data from superclass ...
def getSteering():

rayVector = character.velocity
rayVector.normalize()
rayVector *= lookahead
collision = collisionDetector.getCollision(character.position, rayVector)
if not collision: return None
target = collision.position + collision.normal * avoidDistance
return Seek.getSteering()� �

getCollision implemented by casting a ray from position to
position + moveAmount and checking for intersections with walls or other
obstacles.

39

Steering Behaviors
Delegated SteeringProblems and Work Around

40

Steering Behaviors
Delegated SteeringSummary

41

	Steering Behaviors
	Delegated Steering
	Pursue and Evade
	Face
	Looking Where You Are Going
	Wander
	Path Following
	Separation
	Collision Avoidance
	Obstacle and Wall Avoidance

