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Clustering Paradigms

I Subspace Clustering:
Find clusters in subspaces of the data. The subspaces
where clusters reside are previously unknown.

I Ensemble Clustering:
Derive various clustering results, unify different results
to a single, supposedly more reliable result.

I Alternative Clustering:
Given some clustering result, find a different clustering
(can also be seen as a way of constraint clustering).

I Multi-View Clustering:
Discover different clusterings in different subspaces.
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Relevant and Irrelevant Attributes

I feature relevance
I subset of features

relevant for clustering
I cluster can be identified in

this subspace only
I feature correlation

I a subset of features can
be correlated

I relevant subspace is
arbitrarily oriented
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Local Feature Relevance

different feature subsets/correlations are relevant for
different clusters/outliers
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Problem Setting

Clustering in High-Dimensional Data
Search for clusters in (in general arbitrarily oriented)
subspaces of the original feature space

Challenges:
I Find the correct subspace of each cluster

I Search space:
I all possible arbitrarily oriented subspaces of a feature

space
I infinite

I Find the correct cluster in each relevant subspace
I Search space:

I “Best” partitioning of points
I NP-complete
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Circular Dependency

I circular dependency:
I in order to determine the correct subspace of a cluster,

we need to know (at least) some cluster members
I in order to determine the correct cluster membership,

we need to know the subspaces of all clusters
I solution strategy

I integrate subspace search into clustering process
I requires heuristics to solve

I the clustering problem and
I the subspace search problem

simultaneously
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Assumptions and Categories of Approaches

I one common assumption to restrict the search space:
we look for clusters in axis-parallel subspaces only

I subspace search traversal can
I start from one-dimensional spaces and combine them

(bottom-up)
I start in the full-dimensional space and deselect

attributes (top-down)
I result set of clusters can

I partition the data into disjoint clusters (“projected
clustering”)

I find all clusters in all subspaces (possibly with a huge
overlap/redundancy) (“subspace clustering”)

I both taxonomies are not strict
I other assumptions lead to other approaches

(correlation clustering, pattern-based/ co-/ bi-clustering
[Kriegel et al., 2009, Madeira and Oliveira, 2004])
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Summary

I Rich literature – some surveys by Kriegel et al. [2009,
2012], Sim et al. [2013], Zimek [2013], Zimek et al.
[2014].

I Essential point here: many approaches are interested
in finding potentially different clustering results in
different subspaces.

I Problem: very similar clusters might be found over and
over again in different subspaces (redundancy).
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Ensembles for Classification

Assume a binary classification problem
(e.g., “does some item belong to class ‘A’ or to class ‘B’?”)

I in a “supervised learning” scenario (i.e., we have
examples for ‘A’ and examples for ‘B’), we can learn a
model (i.e., train a classifier)

I some classifier (model) decides with a certain accuracy
I error rate of the classifier: in how many cases

(percentage) is the decision wrong?
I “ensemble”: ask several classifiers, combine their

decision (e.g., majority vote)
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Ensembles for Classification

Method 1

Method 2

Method 3

Method 4

Ensemble}
I the ensemble will be much more accurate than its

components, if
I the components decide independently,
I and each component decides more accurate than a

coin.
I In supervised learning, the literature provides a well

developed theory for ensembles.
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Error-Rate of Ensembles for Classification
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Weak Theory in Clustering

Error-rate and similar concepts are not clearly applicable in
clustering, yet the basic intuition is transferred from
classification to clustering:

Motivation:
All the ensemble members are committing errors, hopefully
not too many, but on different cases, if the members are
independent, i.e., diverse.
By combining such diverse base methods into an ensemble,
the different errors should level out.

Therefore the basic steps are:
I construct diverse enough (but “accurate”) clusterings

for the same data set
I combine the diverse decisions into an ensemble
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Theory on Combination and Diversity

I Combination procedures for cluster ensembles are
relatively well explored [Topchy et al., 2004, 2005, Long
et al., 2005, Fred and Jain, 2005, Caruana et al., 2006,
Domeniconi and Al-Razgan, 2009, Gullo et al., 2009,
Hahmann et al., 2009, Singh et al., 2010].

I There are only a few studies on the impact of diversity
in cluster ensembles, such as the work by Kuncheva
and Hadjitodorov [2004], Brown et al. [2005],
Hadjitodorov et al. [2006], Hadjitodorov and Kuncheva
[2007].
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Heuristics for Diversity

I Possible heuristics to obtain diverse results (as
discussed by Strehl and Ghosh [2002]):

I non-identical sets of features
I non-identical sets of objects
I different clustering algorithms

I first strategy clearly related to subspace clustering
I has been pursued in many approaches, e.g., by Fern

and Brodley [2003], Topchy et al. [2005], Bertoni and
Valentini [2005], but:

I typically, projections are random
I not different solutions are sought in different subspaces,

but true clusters are supposed to be more or less
equally apparent in different randomized projections
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Ensemble Clustering vs. Subspace Clustering

I It is probably interesting to account for the possibility of
different, yet meaningful, clusters in different
subspaces, so ensembles should unify only similar (?)
clusters.

I Possibly, subspace clustering can benefit from
advanced clustering diversity measures in ensemble
clustering [Strehl and Ghosh, 2002, Fern and Brodley,
2003, Hadjitodorov et al., 2006, Gionis et al., 2007,
Fern and Lin, 2008], in order to avoid redundancy.
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Constraint Clustering

I classification (supervised learning): a model is learned
based on complete information about the class
structure of a (training) data set

I clustering (unsupervised learning): a model is fit to a
data set without using prior information

I semi-supervised clustering is using some information,
e.g., some objects may be labeled

I this partial class information is used to derive must-link
constraints or cannot-link constraints [Klein et al., 2002,
Bade and Nürnberger, 2008, Basu et al., 2008,
Davidson and Ravi, 2009, Lelis and Sander, 2009,
Zheng and Li, 2011, Campello et al., 2013, Pourrajabi
et al., 2014]
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Alternative Clustering

Motivation by Gondek and Hofmann [2005]:
“users are often unable to positively describe what they are
looking for, yet may be perfectly capable of expressing what
is not of interest to them”

I constraint of non-redundancy, given some clustering
I objects clustered together in the given clustering

should not be clustered together in a new clustering
[Gondek and Hofmann, 2004, Bae and Bailey, 2006,
Jain et al., 2008, Davidson et al., 2010, Niu et al., 2010,
Dang and Bailey, 2010, Dang et al., 2012]

I a common heuristic to get a different clustering: use
different subspaces [Qi and Davidson, 2009,
Günnemann et al., 2009] – allowing some redundancy?

I survey: ?
22
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Semantically Different Subspaces

I some methods treat different subsets of attributes or
different data representations separately based on a
different semantic of these subsets

I example: color features vs. texture features

I distances in the combined color-texture space are
meaningless
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Different Goals of Multi-View Clustering

I find the same concepts realized in different feature
subsets (the ‘ensemble idea’ – related to
co-learning/co-training) [Blum and Mitchell, 1998,
Bickel and Scheffer, 2004, Sridharan and Kakade,
2008, Chaudhuri et al., 2009, Kumar and Daumé, 2011,
Kriegel and Schubert, 2012]

I find different concepts realized in different feature
subsets (the ‘subspace clustering’ idea – but
subspaces are semantically meaningful) [Cui et al.,
2007, Jain et al., 2008]

I special case of alternative clustering (constraint:
orthogonality of the subspaces) [Dang et al., 2012]

I or special case of subspace clustering allowing
maximal overlap yet seeking minimally redundant
clusters by accommodating different concepts
[Günnemann et al., 2009]
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Different Meaningful Clusterings?

shape feature 1 

sh
a

p
e

 f
e

a
tu

re
 2

color feature 1 

co
lo

r 
fe

a
tu

re
 2

consensus 

27



The Blind Men
and the

Elephant

Arthur Zimek

Clustering Paradigms

Subspace Clustering

Ensemble Clustering

Alternative Clustering

Multi-View Clustering

Summary

Clustering Uncertain
Data

Conclusions

References

Different Meaningful Clusterings?

Example: ALOI [Geusebroek et al., 2005]
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Different Meaningful Clusterings?

Example: Pendigits [Bache and Lichman, 2013]
1

2

1 2 21 1 2

1

2

observation by Färber et al. [2010]
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Uncertain Data

uncertain data can occur in very different scenarios, such
as

I sensor readings

I recognition and parsing

I predictions and extrapolations

I machine learning tasks

I etc. . . .
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Example: Geo-Spatial Data

geo-spatial data may be uncertain due to
I erroneous/inexact GPS readings
I triangulation errors
I human error
I etc. . . .

uncertain spatial data may be represented

I continuously

I discretely
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Dealing with Uncertainty

approach 1: clean
(i.e., remove uncertainty)

pro:
I can use traditional DBMS (and

clustering. . . )

con:
I cleaning non-trivial
I can results be trusted?

approach 2: manage
(i.e., keep uncertainty)

pro:
I preserves information
I can provide confidence

con:
I specialized DBMS (and

clustering. . . )34
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Possible Worlds Semantics

Cleaning non-trivial:
e.g., constraints on data may not be fulfilled when using
aggregates.

I GPS readings
around a lake

I the mean of all
readings is not a
valid position

solution: sampling possible worlds
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Sampling of Possible Worlds
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Representative Solutions
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Thank you for your attention!
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