

Data Mining and the 'Curse of Dimensionality'

iDB Workshop 2011

Arthur Zimek

Ludwig-Maximilians-Universität München Munich, Germany <u>http://www.dbs.ifi.lmu.de/~zimek</u> zimek@dbs.ifi.lmu.de

- 1. The Curse of Dimensionality
- 2. Shared-Neighbor Distances
- 3. Subspace Outlier Detection
- 4. Subspace Clustering
- 5. Conclusions

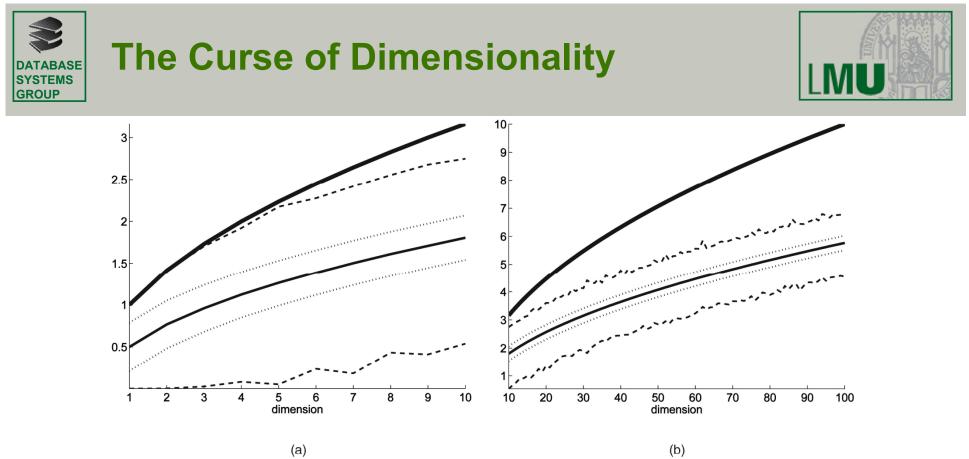
The *"curse of dimensionality"*: one buzzword for many problems [KKZ09]

- First aspect: Optimization Problem (Bellman).
 - *"[The] curse of dimensionality [… is] a malediction that has plagued the scientists from earliest days."* [Bel61]
 - The difficulty of any global optimization approach increases exponentially with an increasing number of variables (dimensions).
 - General relation to clustering: fitting of functions (each function explaining one cluster) becomes more difficult with more degrees of freedom.
 - Direct relation to subspace clustering: number of possible subspaces increases dramatically with increasing number of dimensions.

- Second aspect: *Concentration effect of L_p-norms*
 - In [BGRS99,HAK00] it is reported that the ratio of $(Dmax_d Dmin_d)$ to $Dmin_d$ converges to zero with increasing dimensionality d
 - $Dmin_d$ = distance to the nearest neighbor in *d* dimensions
 - $Dmax_d$ = distance to the farthest neighbor in *d* dimensions Formally:

$$\forall \varepsilon > 0 : \lim_{d \to \infty} P\left[dist_d\left(\frac{Dmax_d - Dmin_d}{Dmin_d}, 0\right) \le \varepsilon\right] = 1$$

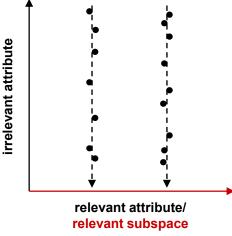
- Distances to near and to far neighbors become more and more similar with increasing data dimensionality (loss of *relative contrast* or *concentration effect* of distances).
- This holds true for a wide range of data distributions and distance functions, but...



From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation, maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the variance remains constant. A small subinterval of the domain of the norm is reached in practice. (Figure and caption: [FWV07])

- The observations stated in [BGRS99,HAK00, AHK01] are valid *within* clusters but *not between different* clusters as long as the clusters are well separated [BFG99,FWV07,HKK+10].
- This is *not* the main problem for subspace clustering, although it should be kept in mind for range queries.

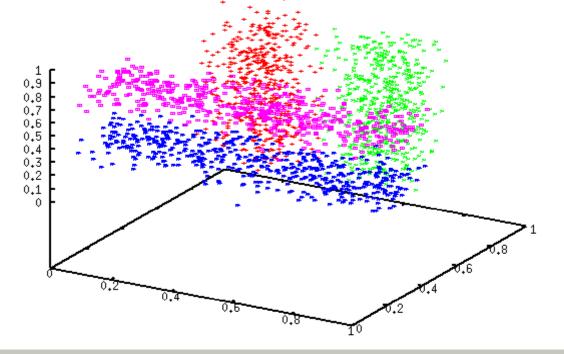
- Third aspect: *Relevant and Irrelevant attributes*
 - A subset of the features may be relevant for clustering
 - Groups of similar ("dense") points may be identified when considering these features only

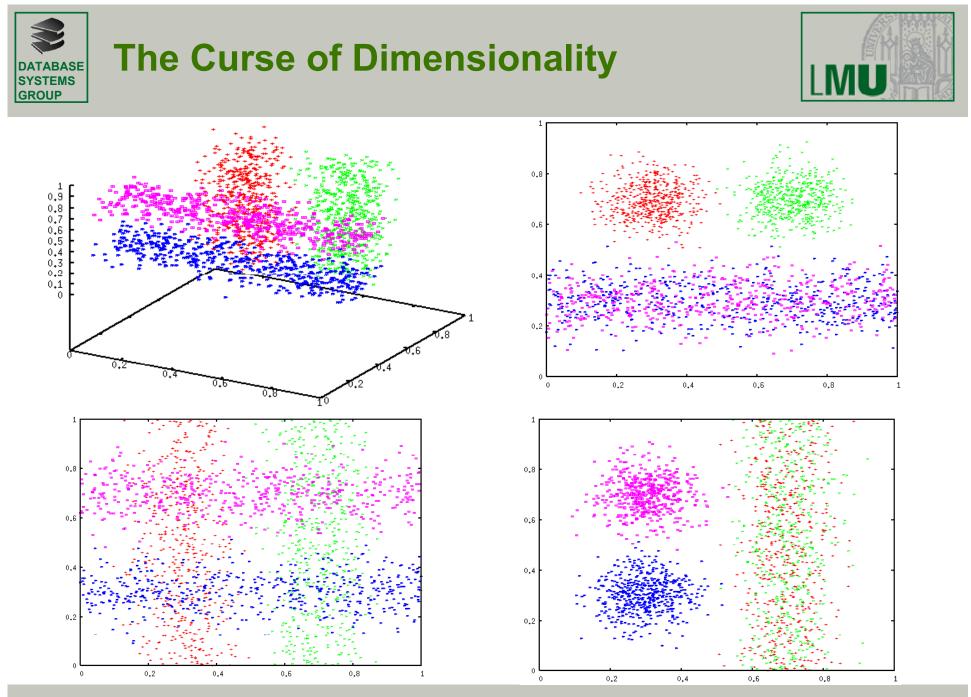


- Different subsets of attributes may be relevant for different clusters
- Separation of clusters relates to *relevant attributes* (helpful to discern between clusters) as opposed to *irrelevant attributes* (indistinguishable distribution of attribute values for different clusters).

The Curse of Dimensionality

- Effect on clustering:
 - Usually the distance functions used give equal weight to all dimensions
 - However, not all dimensions are of equal importance
 - Adding irrelevant dimensions ruins any clustering based on a distance function that equally weights all dimensions





Zimek: Data Mining and the 'Curse of Dimensionality' (iDB Workshop 2011)

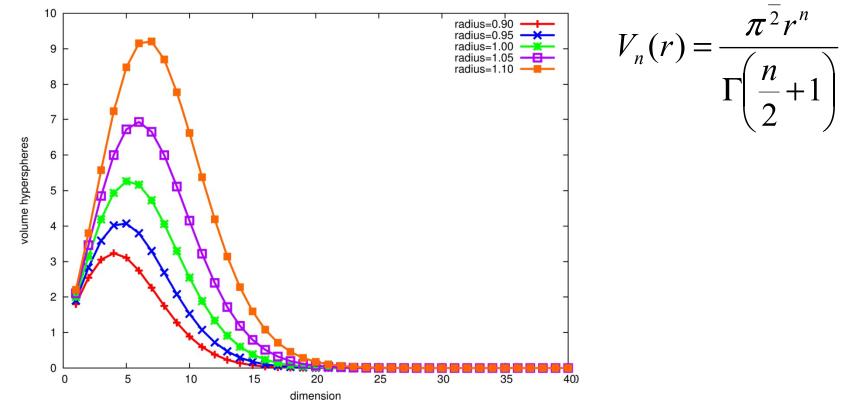
- Fourth aspect: Correlation among attributes (redundancy?)
 - A subset of features may be correlated
 - Groups of similar ("dense") points may be identified when considering this correlation of features only

relevant.

" SUBSDa

- different correlations of attributes may be relevant for different clusters
- can result in lower intrinsic dimensionality of a data set
- bad discrimination of distances can still be a problem

- there are other effects of the "curse of dimensionality"
- just another strange fact: the volume of hyperspheres shrinks with increasing dimensionality!



[HKK+10]: Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? (SSDBM 2010)

- we mainly aim at distinguishing these effects of the 'curse':
 - concentration effect within distributions
 - impediment of similarity search by irrelevant attributes
 - partly: impact of redundant/correlated attributes
- as a remedy for similarity assessment in high dimensional data, to use shared nearest neighbor (SNN) information has been proposed but never evaluated systematically
- [HKK+10]: evaluation of the effects on primary distances (Manhattan, Euclidean, fractional L_p (L_{0.6} and L_{0.8}), cosine) and secondary distances (SNN)

- secondary distances are defined on top of primary distances
- shared nearest neighbor (SNN) information:
 - assess the set of *s* nearest neighbors for two objects *x* and *y* in terms of some primary distance (Euclidean, Manhattan, cosine...)
 - derive overlap of neighbors (common objects in the NN of x and y)

$$\mathrm{SNN}_{s}(x,y) = \left| \mathrm{NN}_{s}(x) \cap \mathrm{NN}_{s}(y) \right|$$

- similarity measure $simcos_s(x, y) = \frac{SNN_s(x, y)}{S}$

cosine of the angle between membership vectors for NN(x) and NN(y)

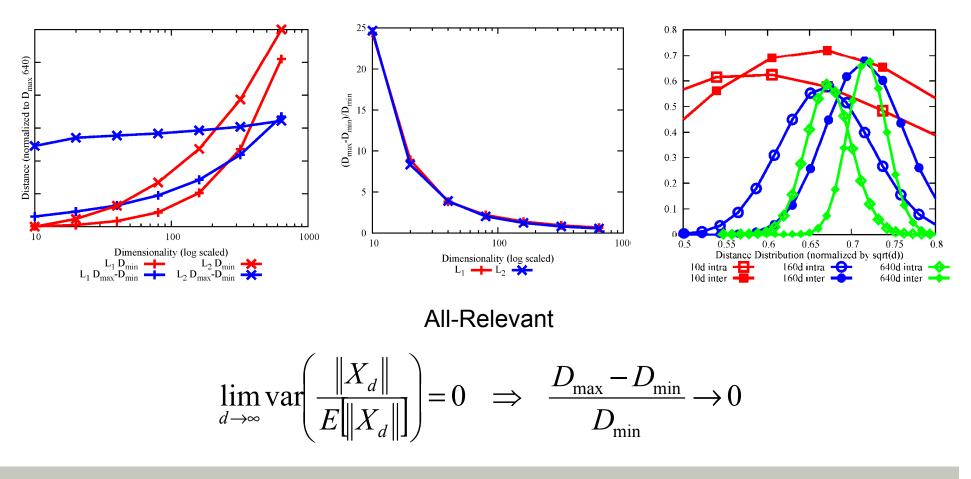
• SNN has been used before in mining high-dimensional data, but alleged quality improvement has never been evaluated

- distance measures based on SNN: $dinv_s(x, y) = 1 - simcos_s(x, y)$ $dacos_s(x, y) = arccos(simcos_s(x, y))$ $dln_s(x, y) = -ln(simcos_s(x, y))$
 - dinv: linear inversion

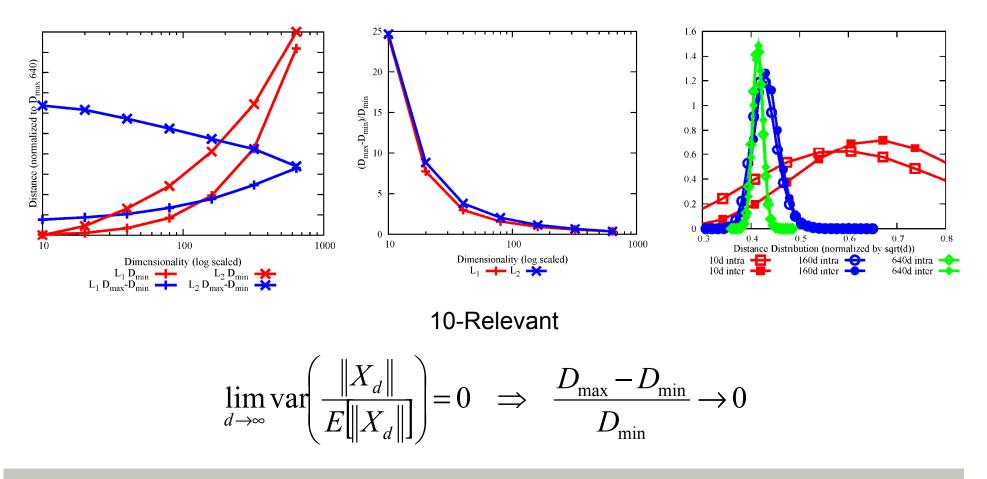
- dacos penalizes slightly suboptimal similarities more strongly
- dln more tolerant for relatively high similarity values but approaches infinity for very low similarity values
- for assessment of ranking quality, these formulations are equivalent as the ranking is unaffected
- only dacos is a metric (if the underlying primary distance is a metric)

- Artificial data sets: n = 10.000 items, c = 100 clusters, up to d = 640 dimensions, cluster sizes randomly determined.
- Relevant attribute values normally distributed, irrelevant attribute values uniformly distributed.
- Data sets:
 - All-Relevant: all dimensions relevant for all clusters
 - 10-Relevant: first 10 dimensions are relevant for all clusters, the remaining dimensions are irrelevant
 - Cyc-Relevant: *i*th attribute is relevant for the *j*th cluster when *i* mod c = j, otherwise irrelevant (here: c = 10, n = 1000)
 - Half-Relevant: for each cluster, an attribute is chosen to be relevant with probability 0.5, and irrelevant otherwise
 - *All-Dependent:* derived from *All-Relevant* introducing correlations among attributes X_{\in} *AllDependent*, Y_{\in} *AllRelevant*: $X_i = Y_i$ ($1 \le i \le 10$), $X_i = \frac{1}{2} (X_{i-10} + Y_i)$ (i > 10)
 - 10-Dependent: derived from 10-Relevant introducing correlations among attributes

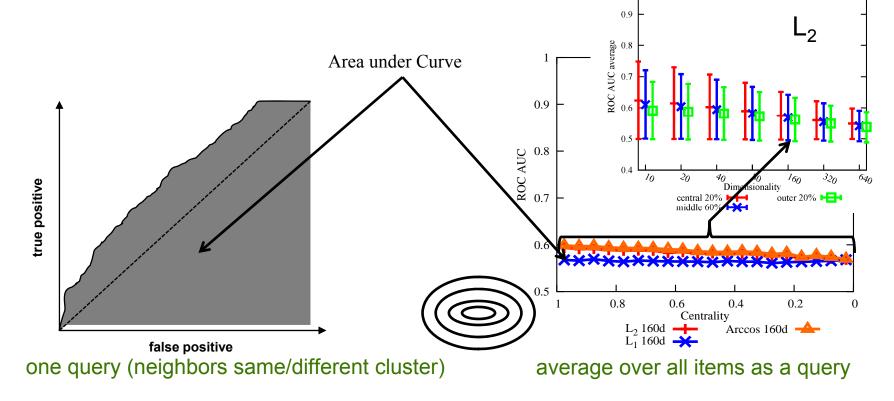
Data sets show properties of the "curse of dimensionality"



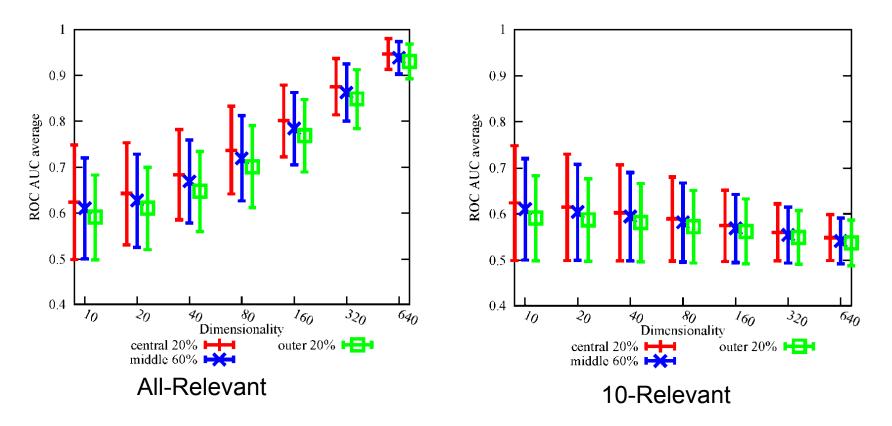
Data sets show properties of the "curse of dimensionality"



 Using each item in turn as a query, neighborhood ranking reported in terms of the Area under curve (AUC) of the Receiver Operating Characteristic (ROC)



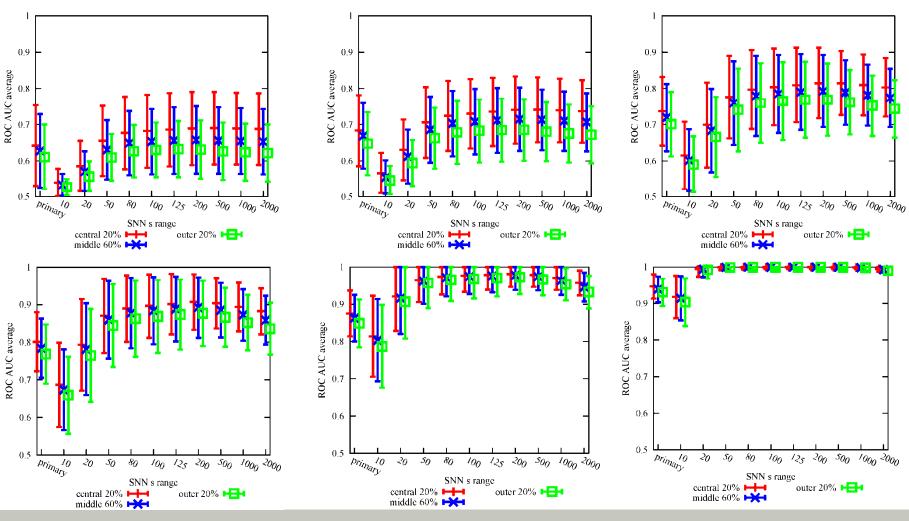
Euclidean distance

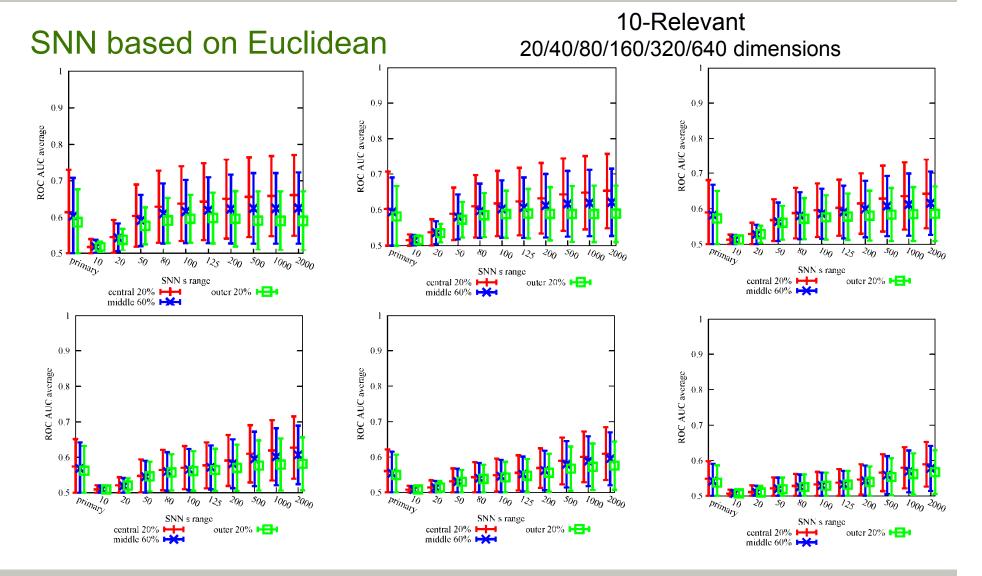


All-Relevant

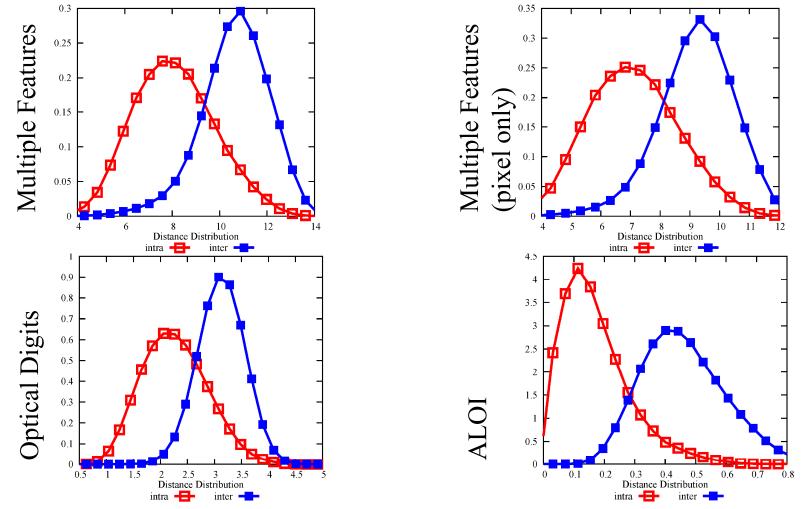
20/40/80/160/320/640 dimensions

SNN based on Euclidean

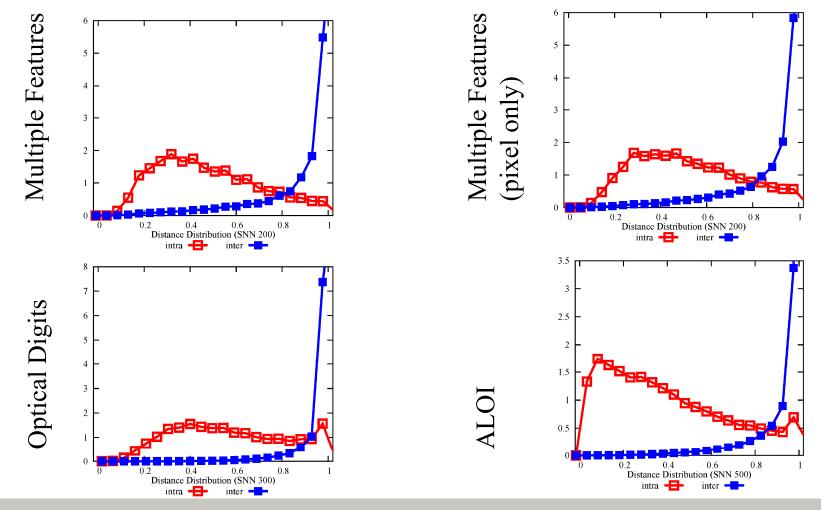




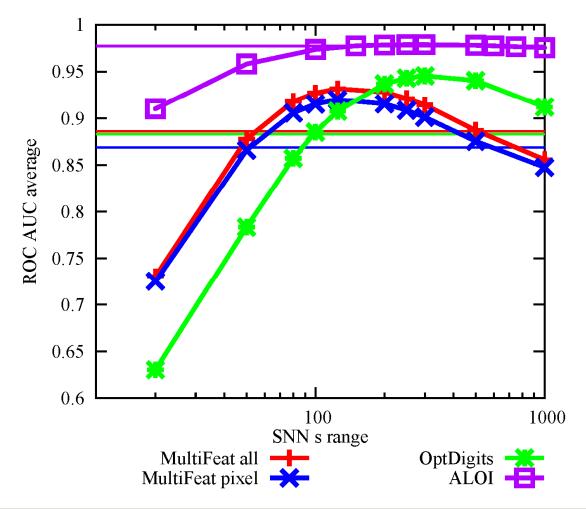
some real data sets: distributions of Euclidean distances



some real data sets: distributions of SNN distances (Euclidean)



some real data sets: ranking quality



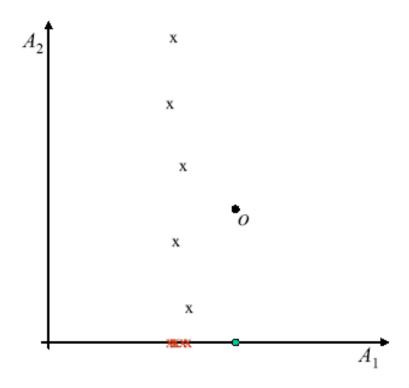
[KKSZ09]: Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data (PAKDD 2009)

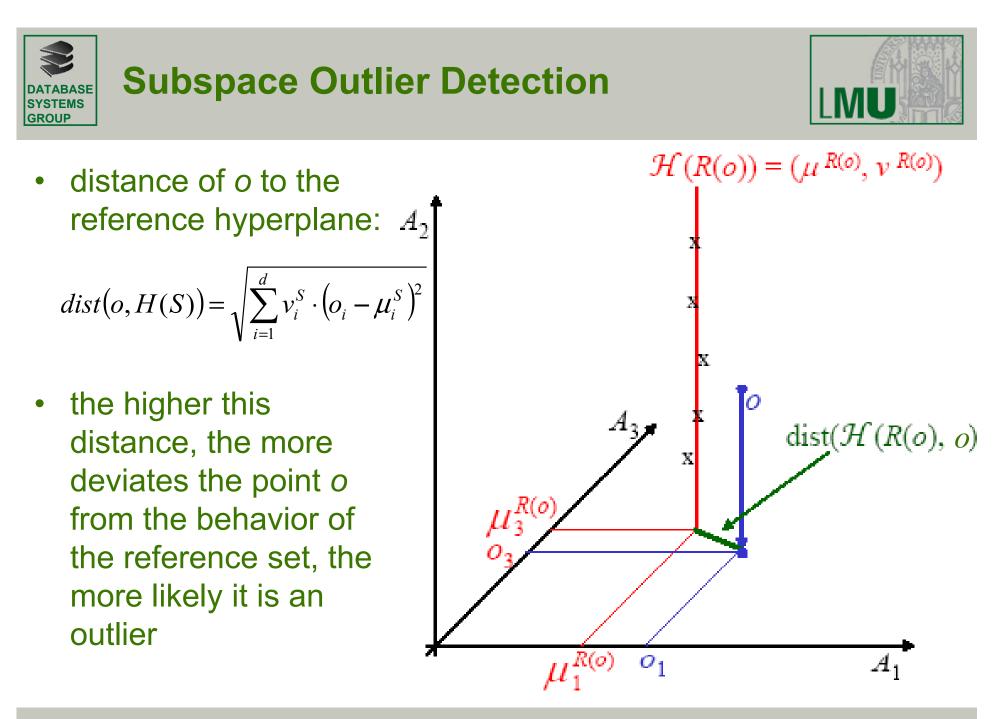
general idea:

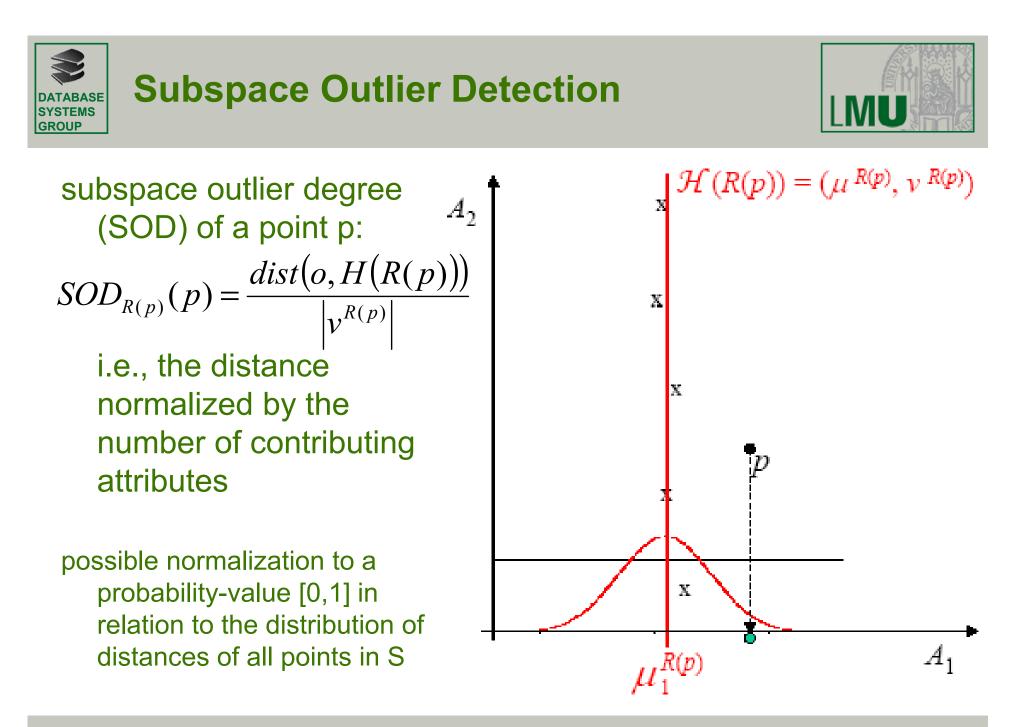
assign a set of reference points to a point o

(e.g., *k*-nearest neighbors – but keep in mind the "curse of dimensionality": local feature relevance vs. meaningful distances)

- find the subspace spanned by these reference points (allowing some jitter)
- analyze for the point *o* how well it fits to this subspace





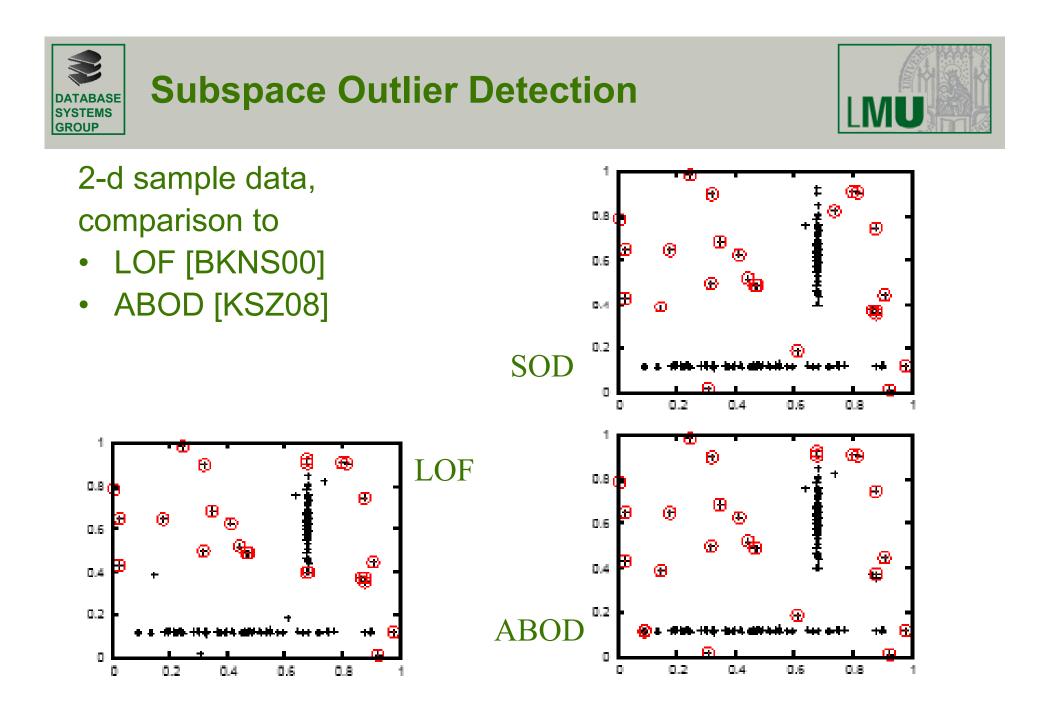


Choice of a reference set for outliers?

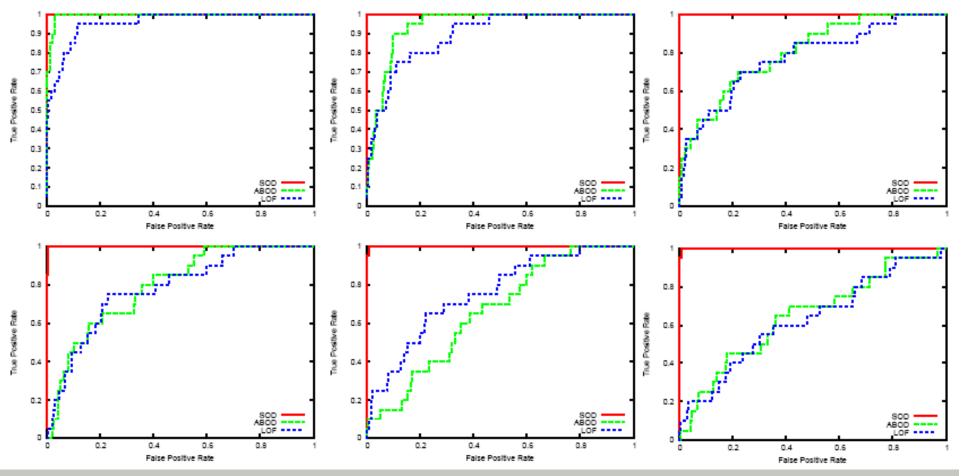
- recall "curse of dimensionality"
 - local feature relevance \rightarrow need for a local reference set
 - distances loose expressiveness → how to choose a meaningful local reference set?
- consider k nearest neighbors in terms of the shared nearest neighbor similarity
 - given a primary distance function *dist* (e.g. Euclidean distance)
 - $N_k(p)$: *k*-nearest neighbors in terms of *dist*
 - SNN similarity for two points p and q: $aim(p,q) = \frac{1}{N} \frac{1}{N}$

$$sim_{SNN}(p,q) = |N_k(p) \cap N_k(q)|$$

- reference set R(p): *I*-nearest neighbors of *p* using sim_{SNN}

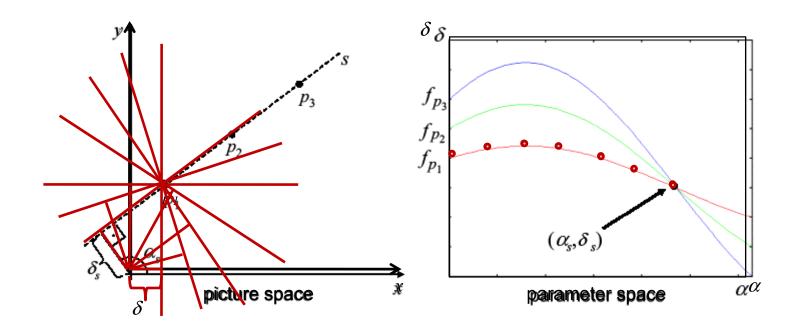


- Gaussian distribution in 3 dimensions, 20 outliers
- adding 7, 17, 27, 47, 67, 97 irrelevant attributes

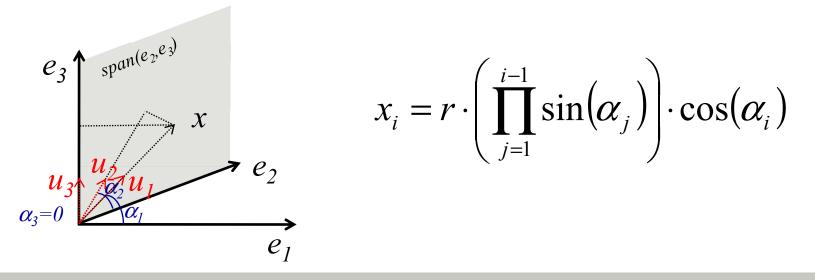


- [ABD+08]: Robust clustering in arbitrarily oriented subspaces (SDM 2008) (extended version: [ABD+08a])
- Algorithm CASH: Clustering in Arbitrary Subspaces based on the Hough-Transform
- Hough-transform:
 - developed in computer-graphics
 - 2-dimensional (image procesing)
- CASH:
 - generalization to *d*-dimensional spaces
 - transfer of the clustering to a new space ("Parameter-space" of the Hough-transform)
 - restriction of the search space (from innumerable infinite to O(n!))
 - common search heuristic for Hough-transform: $O(2^d)$
 - \rightarrow efficient search heuristic

- given: $D \subseteq \mathfrak{R}^d$
- find linear subspaces accommodating many points
- Idea: map points from data space (picture space) onto functions in parameter space

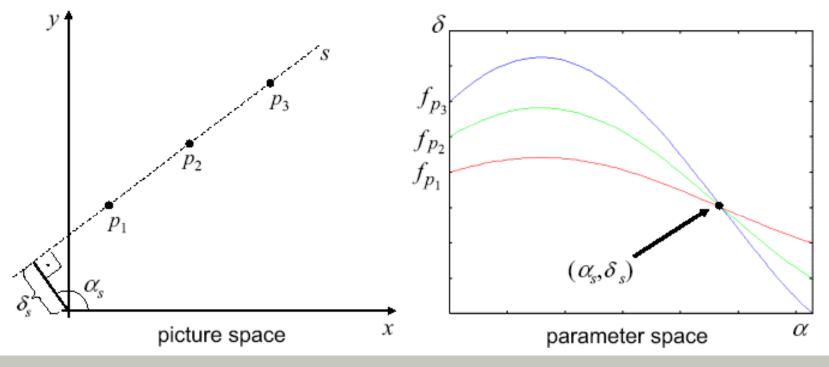


- e_i , $1 \le i \le d$: orthonormal-basis
- $x = (x_1, ..., x_d)^T$: *d*-dimensional vector onto hypersphere around the origin with radius *r*
- *u_i*: unit-vector in direction of projection of *x* onto subspace span(*e_i*,...,*e_d*)
- $\alpha_1, \ldots, \alpha_{d-1}$: α_i angle between u_i and e_i



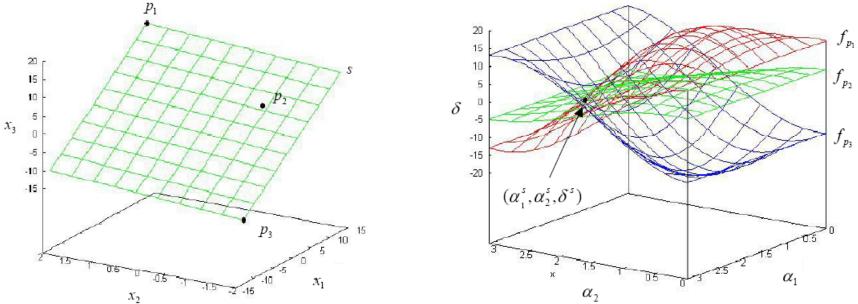
Length δ of the normal vector $\delta \cdot \vec{n}$ with $\|\vec{n}\| = 1$ and angles $\alpha_1, \dots, \alpha_{d-1}$ for the line through point *p*:

$$f_p(\alpha_1,\ldots,\alpha_{d-1}) = \langle p,n \rangle = \sum_{i=1}^d p_i \cdot \left(\prod_{j=1}^{i-1} \sin(\alpha_j)\right) \cdot \cos(\alpha_i)$$



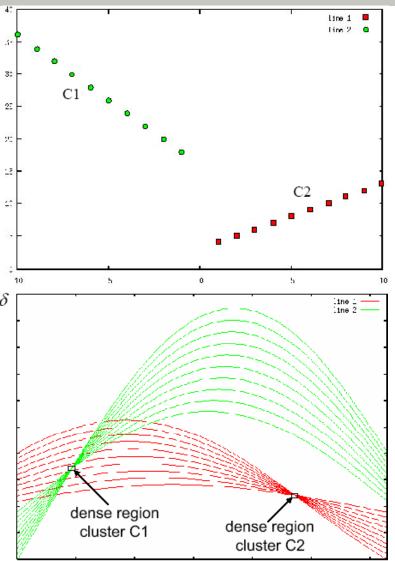
Subspace Clustering

- Properties of the transformation
 - Point in the data space = sinusoidal curve in parameter space
 - Point in parameter space = hyper-plane in data space
 - Points on a common hyper-plane in data space = sinusoidal curves through a common point in parameter space
 - Intersections of sinusoidal curves in parameter space = hyper-plane through the corresponding points in data space



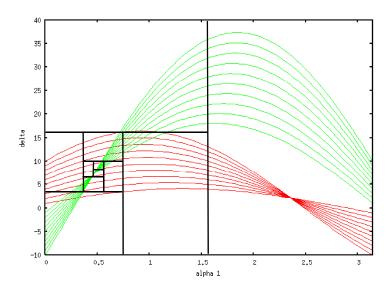
Subspace Clustering

- dense regions in parameter space
 ⇔ linear structures in data space
 (hyperplanes with λ ≤ d-1)
- exact solution: find all intersection points
 - infeasible
 - too exact
- approximative solution: grid-based clustering in parameter space
 → find grid cells intersected by at
 - least *m* sinusoids
 - search space bounded but in $O(r^d)$
 - pure clusters require large value for r (grid solution)



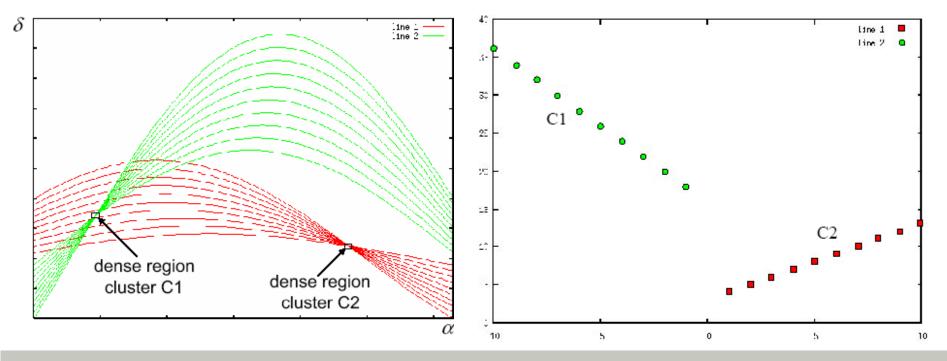
efficient search heuristic for dense regions in parameter space

- construct a grid by recursively splitting the parameter space (best-firstsearch)
- identify dense grid cells as intersected by many parametrization functions
- dense grid cell represents (*d*-1)-dimensional linear structure
- transform corresponding data objects in corresponding (*d-1*)-dimensional space and repeat the search recursively

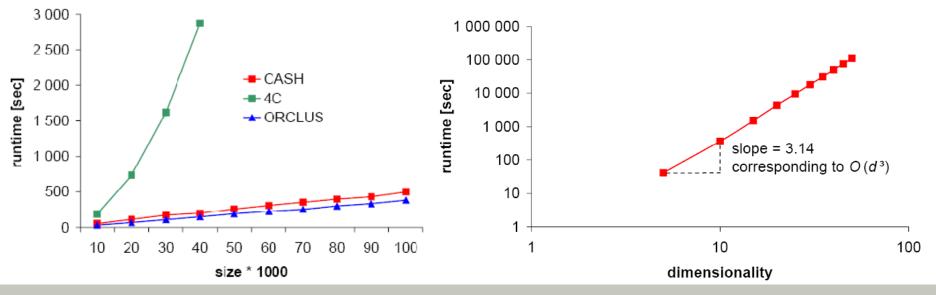


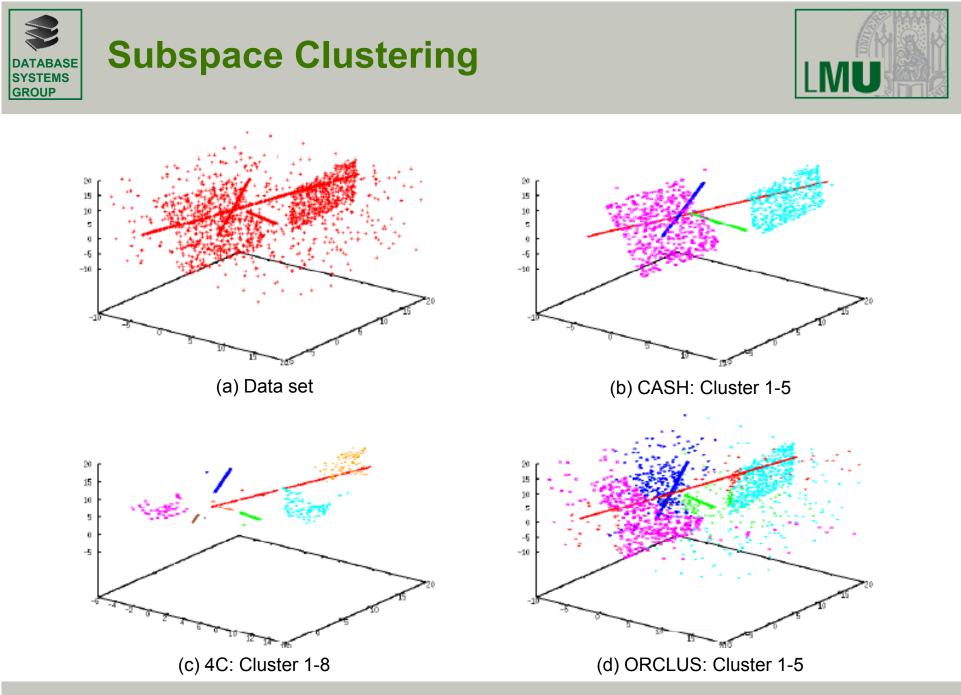
- grid cell representing less than m points can be excluded \rightarrow early pruning of a search path
- grid cell intersected by at least *m* sinusoids after *s* recursive splits represents a correlation cluster (with $\lambda \leq d-1$)

- remove points of the cluster (and corr. sinusoids) from remaining cells

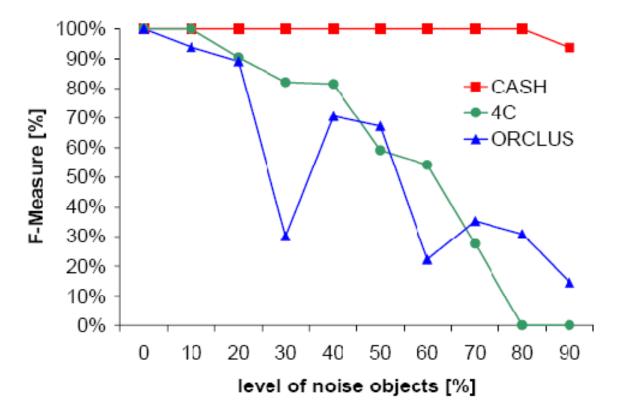


- search heuristic: linear in number of points, but ~ O(d³)
 depth of search s, number c of pursued paths (ideally: c cluster):
 - priority search: O(s·c)
 - determination of curves intersecting a cell: $O(n \cdot d^3)$
 - overall: O(s·c·n·d³)
 (note: PCA generally in O(d³))





• stability with increasing number of noise objects



- The curse of dimensionality does not count in general as an excuse for everything – depends on the number and nature of distributions in a data set
- the nature of each particular problem needs to be studied in its own
- part of the curse: it's always different than expected
- if you ever think, you have solved the problems of the curse: watch out for the curse striking back!

- do not take everything for granted which is stated in the literature
- consider claims in the literature:
 - is there enough evidence to support the claims?
 - is the interpretation of the claims clear?
 - challenge them or support them
- papers report the strengths you should try to find out the weaknesses and to improve
- have fun!

[ABD+08]	E. Achtert, C. Böhm, J. David, P. Kröger, and A. Zimek. Robust clustering in arbitrarily oriented subspaces.
	In Proceedings of the 8th SIAM International Conference on Data Mining (SDM), Atlanta, GA, 2008
[ABD+08a]] E. Achtert, C. Böhm, J. David, P. Kröger, A. Zimek: <i>Global Correlation Clustering Based on the Hough Transform</i> Statistical Analysis and Data Mining, 1(3): 111-127, 2008.
[ABK+06]	E. Achtert, C. Böhm, HP. Kriegel, P. Kröger, and A. Zimek. Deriving quantitative models for correlation clusters . In Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, PA, 2006.
[ABK+07c]	E. Achtert, C. Böhm, HP. Kriegel, P. Kröger, and A. Zimek. Robust, complete, and efficient correlation clustering . In Proceedings of the 7th SIAM International Conference on Data Mining (SDM), Minneapolis, MN, 2007.
[AHK01]	C. C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising behavior of distance metrics in high dimensional space. In Proceedings of the 8th International Conference on Database Theory (ICDT), London, U.K., 2001.

[Bel61]	R. Bellman.
	Adaptive Control Processes. A Guided Tour. Princeton University Press, 1961.
[BFG99]	K. P. Bennett, U. Fayyad, and D. Geiger.
	Density-based indexing for approximate nearest-neighbor queries.
	In Proceedings of the 5th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, 1999.
[BGRS99]	K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
	When is "nearest neighbor" meaningful?
	In Proceedings of the 7th International Conference on Database Theory (ICDT), Jerusalem, Israel, 1999.
[BKNS00]	M. M. Breunig, HP. Kriegel, R.T. Ng, J. Sander.
	LOF: Identifying Density-based Local Outliers.
	In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Dallas, TX, 2000.
[FWV07]	D. Francois, V. Wertz, and M. Verleysen.
	The concentration of fractional distances.
	IEEE Transactions on Knowledge and Data Engineering, 19(7): 873-886, 2007.

[HAK00] A. Hinneburg, C. C. Aggarwal, and D. A. Keim.
What is the nearest neighbor in high dimensional spaces? In Proceedings of the 26th International Conference on Very Large Data Bases (VLDB), Cairo, Egypt, 2000.
[HKK+10] M. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek.
Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? In Proceedings of the 22nd International Conference on Scientific and Statistical Data Management (SSDBM), Heidelberg, Germany, 2010.
[KKSZ09] H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek: Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data. In Proc. 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand, 2009.

 [KKZ09] H.-P. Kriegel, P. Kröger, and A. Zimek.
 Clustering High Dimensional Data: A Survey on Subspace Clustering, Patternbased Clustering, and Correlation Clustering.
 ACM Transactions on Knowledge Discovery from Data (TKDD), Volume 3, Issue 1 (March 2009), Article No. 1, pp. 1-58, 2009.
 [KSZ08] H.-P. Kriegel, M. Schubert, A. Zimek.
 Angle-Based Outlier Detection in High-dimensional Data. In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Las Vegas, NV, 2008.