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In the past decade, many automated prediction methods for the subcellular localization of proteins have
been proposed, utilizing a wide range of principles and learning approaches. Based on an experimental
evaluation of different methods and on their theoretical properties, we propose to combine a well
balanced set of existing approaches to new, ensemble-based prediction methods. The experimental
evaluation shows our ensembles to improve substantially over the underlying base methods.

1. Introduction

In cells, different regions have different functionalities. Certain functionalities are per-
formed by specific proteins. To function properly, a protein must be localized in the proper
region of a cell. Co-translational or post-translational transport of proteins into specific sub-
cellular localizations is therefore a highly regulated and complex cellular process. Knowing
of the subcellular localization of a protein helps to annotate its possible interaction partners
and functionalities.

Starting in the mid-nineties of the last century, until now a plethora of automated pre-
diction methods for the subcellular localization of proteins has emerged. These methods
are based on different sources of information like the amino acid composition of the pro-
tein, specific sorting signals or targeting sequences contained in the protein sequence, or
homology search in databases of proteins with known localization. Furthermore, hybrid
methods combine the different sources of information often in a very specialized way. Be-
sides different sources of information, prediction methods differ in the employed learning
algorithms (like naive Bayes and Bayes networks, k-nearest neighbor methods, support vec-
tor machines (SVM), and neural networks). Due to their different sources of information,
prediction methods differ widely in their coverage of different localizations. For example,
methods based on targeting sequences generally have a low coverage of only a few local-
izations. Methods based on amino acid composition vary considerably in their coverage.
The coverage of a method is also directly related to the available classes in the data sets
used for training of the corresponding method. As most prediction methods are trained and
evaluated on data sets suitable to their requirements in coverage, it is a hard task to compare
different methods w.r.t. their performance.9

In this paper, we survey shortly prominent methods for prediction of subcellular local-
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ization of proteins, particularly considering their different properties (Section 2). Based on
a diverse selection of the best methods, we propose combined methods using a well bal-
anced set of prediction methods as new ensemble-methods (Section 3). Section 4 presents
the evaluation of selected localization prediction methods in comparison to our new ensem-
ble methods. Finally, Section 5 concludes the paper.

2. Survey on Prominent Prediction Methods for Subcellular Localization

For our evaluation of localization prediction methods, we confined the selection to those
that are available (excluding methods like NNPSL24 or fuzzy loc16), and that focus on
eukaryotic localization prediction (excluding methods like PSORT-B11 or PSLPred3). In
the following, we survey prominent examples from these methods, choosing representatives
for the different sources of information the methods are based upon.

2.1. Amino Acid Composition

Predicting the subcellular localization based on amino acid composition was suggested by
Nakashima and Nishikawa.22 They presented a method to discriminate between intracellu-
lar and extracellular proteins using the amino acid composition. In the following years, a
number of approaches using the amino acid composition was proposed.

SubLoc15 uses one-versus-rest support vector machines (SVM) to predict the localiza-
tion. No additional information aside from the amino acid composition (like, e.g., dipep-
tide composition) is used for the prediction. In contrast to SubLoc, PLOC23 additionally
considers the dipeptide composition and the gapped amino acid composition aside from
the standard amino acid composition. Like SubLoc, this method employs one-versus-rest
SVMs. By using pairs of peptides the authors take more sequence-order information than
SubLoc into account. The gapped pair composition corresponds to periodic occurrences
of certain amino acids in the sequence. Similar to PLOC, CELLO17 incorporates several
kinds of compositions, including single, dipeptide, and partitioned amino acid composi-
tions. Furthermore, compositions based on physicochemical properties of the amino acids
were derived. These features are again used as input for one-versus-rest SVMs.

2.2. Sorting Signals

One of the earliest works trying to identify a certain location based on protein sorting sig-
nals was already presented in 1986.27 Most of the methods based on sorting signals are very
specialized. For example, Mitoprot5 predicts only mitochondrial proteins, SignalP2 predicts
only proteins of the secretory pathway. More general methods in this category are iPSORT1

and Predotar.25 The comparison of these two methods is especially interesting because they
use very different computational approaches: iPSORT uses simple and interpretable rules
based on protein sequence features. These features are derived from the so-called amino
acid index, a categorization of amino acids based on different kinds of properties. iPSORT
uses N-terminal sorting signal sequences. Predotar considers N-terminal sorting signals as
well and processes the input information with a feed forward neural network. As an out-



September 28, 2007 15:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc044a

3

put value, this method yields probability values for the presence of a certain localization
sequence rather than an abstract score.

2.3. Homology

Prominent methods based on homology search are PredictNLS6 and PA SUB.19 Pre-
dictNLS is also based on sorting signals, as it is trained on a data set of experimentally
confirmed nuclear localization signal (NLS) sequences. This data set is extended by homol-
ogy search. Nevertheless, NLSPred is specialized on recognizing nuclear proteins. PA SUB
is purely based on PSI-BLAST homology search using database annotations from homol-
ogous proteins. In many cases, homology search is very accurate. However, the result will
be arbitrary if no homologous protein with localization annotation is available. The com-
bination of homology search with other methods is a common way to overcome this short-
coming.

2.4. Hybrid Methods

As in PredictNLS, most of the methods using homology search combine this technique
with some other sources of information. In this category, great effort was already spent to
develop refined combinations of information and methods. One often finds series of related
approaches from certain groups like the PSORT series (PSORT,21 PSORT-II,20 PSORT-
B,10,11 and WoLFPSORT14) or ESLPred,4 HSLPred,12 and PSLPred.3 The PSORT-B ap-
proaches and PSLPred are specialized for bacteria. PSORT is one of the earliest methods
at all, based on amino acid composition, N-terminal targeting sequence information, and
motifs. Like iPSORT, it is based on a set of rules. PSORT-II uses a k-NN approach. WoLF-
PSORT uses a feature selection procedure and incorporates new features, based on new
sequence data, simultaneously increasing the coverage of localizations and organisms. ES-
LPred uses an SVM approach, combining amino acid composition, dipeptide composition,
overall physicochemical properties, and PSI-BLAST scores. The extensions HSLPred and
PSLPred focus on human and prokaryotic proteins, respectively. MITOPRED13 uses Pfam
domains and amino acid composition, and is specialized for mitochondrial proteins. Multi-
Loc18 traines SVMs based on N-terminal targeting sequences, sequence motifs, and amino
acid composition.

3. Ensemble Methods

In preliminary tests on our data set, the accuracy of all compared methods was not as
high as reported in their original literature for other data sets, meaning our data set can be
considered as not too easy. Furthermore, there were sequences with certain localizations
always wrongly predicted by some methods, e.g. there was no protein with localization
vacuole within fungi group predicted positively although there were 68 vacuole proteins
in this group. Some other methods could predict more accurately for these proteins while
they might be incapable of accurate prediction of other localizations. In other words, each
method has its own advantages and disadvantages. These findings motivate the idea to
combine some of these methods.
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3.1. Theory

Combining several self-contained predicting algorithms to an ensemble to yield a better
performance in terms of accuracy than any of the base predictors, is backed by a sound
theoretical background.7,8,26 In short, a predictive algorithm can suffer from several lim-
itations such as statistical variance, computational variance, and a strong bias. Statistical
variance describes the phenomenon that different prediction models result in equally good
performance on training data. Choosing arbitrarily one of the models can then result in
deteriorated performance on new data. Voting among equally good classifiers can reduce
this risk. Computational variance refers to the fact, that computing the truly optimal model
is usually intractable and hence any classifier tries to overcome computational restrictions
by some heuristics. These heuristics, in turn, can lead to local optima in the training phase.
Obviously, trying several times reduces the risk of choosing the wrong local optimum. A
restriction of the space of hypotheses a predictive algorithm may create is refered to as bias
of the algorithm. Usually, the bias allows for learning an abstraction and is, thus, a nec-
essary condition of learning a hypothesis instead of learning by heart the examples of the
training data (the latter resulting in random performance on new data). However, a strong
bias may also hinder the representation of a good model of the true laws of nature one
would like to learn. A weighted sum of hypotheses may then expand the space of possible
models.

To improve over several self-contained classifiers by building an ensemble of those
classifiers requires the base algorithms being accurate (i.e., at least better than random)
and diverse (i.e., making different errors on new instances). It is easy to understand why
these two conditions are necessary and also sufficient. If several individual classifiers are
not diverse, then all of them will be wrong whenever one of them is wrong. Thus nothing
is gained by voting over wrong predictions. On the other hand, if the errors made by the
classifiers were uncorrelated, more individual classifiers may be correct while some indi-
vidual classifiers are wrong. Therefore, a majority vote by an ensemble of these classifiers
may be also correct. More formally, suppose an ensemble consisting of k hypotheses, and
the error rate of each hypothesis is equal to a certain p < 0.5 (assuming a dichotomous
problem), though independently. The ensemble will be wrong, if more than k/2 of the en-
semble members are wrong. Thus the overall error rate p̄ of the ensemble is given by the
area under the binomial distribution, where k ≥ �k/2�, that is for at least �k/2� hypothe-
ses being wrong: p̄ (k, p) =

∑k
i=�k/2�

(
k
i

)
pi(1 − p)k−i. The overall error-rate is rapidly

decreasing for an increasing number of ensemble members.

3.2. Selection of Base Methods for Ensembles

Comparing several methods based on amino acid compositions we found an increase of
accuracy by adding more sequence-order information. CELLO behaved best no matter for
which taxonomy group because it used the most sequence-order information: single amino
acid composition, dipeptide composition, n-peptide composition, and even physicochemi-
cal properties of amino acids in the updated version that we used. In contrast, PLOC which
used only amino acid composition and dipeptide composition had more false predictions
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than CELLO, but it was more accurate than SubLoc which used only single amino acid
composition. In comparison, the methods based on detecting N-terminal sorting signals
performed better than expected, although they have to handle missing N-terminal sorting
signals. Of the hybrid methods the two newest, WoLFPSORT (2006) and MultiLoc (2006),
had similar prediction ability and their accuracy is higher than that of the others in this
category.

Based on the results of our preliminary experimental comparisons and the criteria of
usability, reliability, efficiency, coverage, and, for theoretical reasons, as discussed above,
diversity in the underlying methods and sources of information, we chose the following
methods to build an ensemble: From the methods based on amino acid composition SubLoc
was excluded because of its too simple foundation and its lower rank during the prelimi-
nary tests. In addition, both PLOC and CELLO use the single amino acid composition too
and predict more accurately than SubLoc. iPSORT and Predotar as prominent examples of
methods based on sorting signals had similar prediction ability in our preliminary tests but
use quite different algorithms, so both of them were chosen for the combination. PA SUB
is a purely homology-based method. The data set used for generating PA SUB consists of
virtually all Swiss-Prot29 entries that provide a localization annotation. As we evaluate the
considered methods and our combination of methods on an up-to-date data set also com-
piled from Swiss-Prot, we exclude PA SUB from the experiments, as it is highly overfitted
to the data set. Usually, as discussed above, homology-based approaches are combined with
other approaches. From the hybrid methods only the method PSORT II was excluded, be-
cause we use its extension WoLFPSORT which is more accurate and has a larger taxonomy
coverage than PSORT II. HSLPred is used for the human proteins. Although its localiza-
tion coverage is very narrow, it is still very sensitive for the three localizations within its
coverage. Finally we chose 7 methods for the plant, animal and fungi groups and 8 methods
for the human group to construct an ensemble method: PLOC, CELLO, iPSORT, Predotar,
WoLFPSORT, MultiLoc, ESLPred, and, for human proteins, HSLPred.

3.3. Ensemble Method Based on a Voting Schema

Despite a clear theoretical background for ensemble learning in general, the combination
of localization prediction methods is not trivial due to the wide range of localization and
taxonomic coverage. Imagining a prediction method as a function from some feature space
to some class space, the base learners map the proteins into different class spaces. Thus,
for unifying the prediction methods, the class spaces must be unified first. The unified class
space should contain the classes supported by most of the methods (resulting in the set of
ten localization classes as described above). Methods that are unable to predict some of the
classes contained in the unified class space must be treated especially. Furthermore, some
methods (PLOC, CELLO, WoLFPSORT, and MultiLoc) predict exactly one localization
for a query protein while others (iPSORT, Predotar, ESLPred, and HSLPred) predict a range
of possible localizations. We define therefore a voting schema as follows: Methods in the
first group give their vote to one certain localization at a time if the predicted localization
belongs to the 10 localizations in our data set. Otherwise their vote is blanked out. Methods
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Table 1. Ranks of different classification methods for the considered taxonomic groups.

Taxonomic group CELLO ESLPred HSLPred iPSORT MultiLoc PA SUB
Animal 2 10 — 3 6 1
Fungi 4 9 — 1 7 3
Human 4 10 7 2 6 1
Plant 3 2 — 9 8 1

Taxonomic group PLOC Predotar PSORT II SubLoc WoLFPSORT
Animal 4 5 8 9 7
Fungi 5 2 8 10 6
Human 5 3 9 11 8
Plant 4 7 — 6 5

in the second group may give their vote to several localizations at a time. If a classifier maps
the proteins into a class space containing some of the ten classes and a class ‘unknown’, a
prediction for class ‘unknown’ can be mapped to the set of the remaining classes. However,
if a classifier cannot decide between some classes, this will not mean automatically that the
protein belongs to the set of unknown classes. For example, if there is no sorting signal
being detected by iPSORT or Predotar, we cannot say that this protein is not localized in
chloroplast, mitochondrion, or the secretory pathway, because the N-terminal sequence of
this protein may be not complete. In this case, iPSORT and Predotar will give up on voting.

Based on the votes of all base classifiers, we derive a vector s of scorings for the local-
izations, where for localization i the score si is computed as follows:

si =

N∑

j=1

(vj · (N − rankj + 1) ,

where N is the number of methods used by the ensemble method, rankj is the rank in ac-
curacy of method j according to our preliminary tests, and vj = 1 if method j votes for
localization i (allowing voting for multiple localizations), otherwise vj = 0. This ensemble
is therefore built based on prior knowledge concerning the performance of the base classi-
fiers. We also tried a voting without explicitly ranking the votes of the base classifiers, but
the results were not acceptable. The ranks we used for the evaluation can be found in Table
1.

3.4. Ensemble Method Based on Decision Trees

As requiring prior knowledge to construct a voting schema is not satisfying, we chose to
derive the voting schema by decision trees, trained on the predictions of the single base
methods and the correct localization classes. Decision trees combine the benefits of gener-
ally good accuracy and interpretable models, i.e. the derived voting schema provides further
information regarding the performance of the underlying methods on different localization
classes. For example, the decision tree for the taxonomic group “plant” learns a rule like
If CELLO predicts class 6 and WoLFPSORT predicts class 4, then class 4 is correct. We
trained decision trees using J48 of WEKA28 for each taxonomic group.
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Table 2. Covered subcellular localizations and corresponding keywords in SWISS-PROT.

ID Subcellular Keywords in SWISS-PROT ID Subcellular Keywords in SWISS-PROT
localization localization

1 Chloroplast Chloroplast 8 Peroxisome Peroxisome, Peroxisomal
2 Cytoplasm Cytoplasm(ic) Microsome, Microsomal
3 ER Endoplasmic reticulum Glyoxysome, Glyoxysomal
4 Golgi apparatus Golgi Glycosome, Glycosomal
5 Lysosome Lysosome, Lysosomal 9 Extracellular Extracellular
6 Mitochondrion Mitochondrion, Mitochondrial Secreted
7 Nucleus Nucleus, Nuclear 10 Vacuole Vacuole, Vacuolar

4. Evaluation

Although more and more prediction methods for subcellular localization have been devel-
oped, several limitations exist. First, the coverage of predicted localizations, which ranges
from just a few localizations to all possible localizations. While e.g., SubLoc predicts only
4 localizations, PLOC is able to predict 12 localizations. Second, most existing methods
were trained by a limited number of sequences from a specific taxonomic category of or-
ganisms, so the methods differ in their taxonomic coverage. The third aspect is the so-called
sequence coverage, which is the number of sequences the different approaches learn from.
Nonetheless, many newly developed methods still use the data set created by Reinhardt and
Hubbard in 1998.24 Thus, we decided to compile an up-to-date data set based on Swiss-
Prot.29 In order to compare methods differing widely in many aspects, we restricted the
data set to 10 localization classes which are commonly accepted by most of the methods.
These localization classes are listed in Table 2. This selection accommodates most of the
available and rather general methods. For methods with a narrower localization coverage
we used their reliability indices and assigned query sequences with lower reliability indices
to the class “unknown”. While their coverage is narrower, these methods often exceed oth-
ers in their performance for the covered localization classes.

Based on Swiss-Prot (release 53.0), we at first selected all eukaryotic proteins with a
unique subcellular localization annotation, where the localization annotation was one of the
10 localization classes listed in Table 2. Then, all proteins with a sequence length smaller
than 60 amino acids were removed, as this is the required minimal sequence length for Pre-
dotar, the method with the largest required minimal length. Finally we kept only those pro-
teins whose localization annotation was experimentally confirmed and belonged to one of
the taxonomic groups “plant”, “fungi”, “human”, or “animal”. As the golgi group of plants
was too small (7 entries), we complemented this group with 28 proteins whose localization
information was not confirmed experimentally. This yielded 4 subsets corresponding to the
4 taxonomic groups. Table 3 lists the final number of proteins for each taxonomic group
and each localization class.

Both the ensemble methods as well as the single base classifiers were evaluated by 10-
fold cross-validations on our data set. The results are illustrated in Figures 1 and 2. Figure 1
shows the total accuracy. The simple weighted voting schema (“Voting”) performs slightly
better than the base classifiers. The decision tree ensembles (“DT-Ensemble”) clearly out-
perform all other methods (including the voting schema). The most prominent improvement
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Table 3. Number of proteins for different taxonomic groups and localization
classes.

Plant Fungi Animal Human Total
1 Chloroplast 3425 0 0 0 3425
2 Cytoplasm 470 578 1394 511 2953
3 ER 66 170 391 164 791
4 Golgi 35 55 78 55 223
5 Lysosome 0 0 102 56 158
6 Mitochondrion 370 632 1341 347 2690
7 Nucleus 308 899 2221 1094 4522
8 Peroxisome 50 85 181 72 388
9 Extracellular 149 199 596 4723 5667

10 Vacuole 35 68 0 0 103
Total 4908 2686 10431 2895 20920
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Fig. 1. Comparison between single and ensemble classification methods: Total Accuracy, i.e., the overall per-
centage of correctly predicted instances.

can be seen in the plant group, were the other methods mostly perform rather weak (at best,
ESLPred reaches an accuracy of just below 60%), while the accuracy of the decision tree
ensemble is well above 80%.

Most methods perform comparably well in terms of specificity (cf. Figure 2). Again,
in the plant group the improvement of both ensemble methods is most prominent. In the
remaining taxonomic groups the best base classifiers already reach almost 100%. Thus,
no significant improvement can be expected. However, the ensemble methods perform as
well as the best base classifiers. The decision tree ensembles even slightly improve over the
already very good values.

All our methods are available via a webinterface at http://www.dbs.ifi.lmu.
de/research/locpred/ensemble/.

5. Conclusions

In this paper, we shortly surveyed some prominent prediction methods for subcellular local-
ization of proteins. The spectrum of underlying information (as amino acid composition,



September 28, 2007 15:25 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc044a

9

0.5

0.6

0.7

0.8

0.9

1

Plant Fungi Animal Human

A
vg

. S
pe

ci
fic

ity
DT-Ensemble
Voting
PLOC
CELLO
iPSORT
Predotar
WoLFPSORT
MultiLoc
ESLPred
HSLPred

Fig. 2. Comparison between single and ensemble classification methods: Average Specificity, i.e., the percentage
averaged over all localization classes to correctly exclude an instance from the corresponding class.

sorting signals, and homology search) makes these methods ideally diverse to expect an
ensemble composed of these methods to improve considerably in terms of accuracy. We
developed two ensemble methods: First, a simple voting scheme using the votes of the base
learners weighted according to their average performance (based on prior knowledge), sec-
ond, decision trees trained on the prediction values of the base methods (thus learning the
weight of the methods on the fly and allowing for a more complex weighting). Both en-
sembles are shown to improve over the base classifiers in most cases. The decision tree
ensemble can even said to outperform the remaining methods.
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