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Abstract—When comparing clustering results, any evaluation
metric breaks down the available information to a single number.
However, a lot of evaluation metrics are around, that are
not always concordant nor easily interpretable in judging the
agreement of a pair of clusterings. Here, we provide a tool to
visually support the assessment of clustering results in comparing
multiple clusterings. Along the way, the suitability of a couple
of clustering comparison measures can be judged in different
scenarios.

I. INTRODUCTION

Because of the potentially high complexity of data sets
and in sight of different clustering results based on different
parameters or different methods, as well as due to the low
insight provided by numerical metrics, an abstract visual rep-
resentation to give more information may be useful. Missing
a gold standard for comparing clusterings (i.e., no perfect
partitioning is known), methods for evaluating the results are
required to find the best choice. Measure indices rate the
similarity between clusterings, however with the large number
of metrics known in the literature it is uncertain which measure
index presents the best guess. Furthermore, we would be
interested in reasons for the different clustering results and
why one cluster algorithm performs better or worse on a given
data set. To support research in these issues, we provide a tool
evaluating measure indices and comparing clustering results.
In order to apply a visualization for any clustering and any
complexity of data, an abstract visualization needs to avoid
visual cluttering.

Basically three categories in comparing clusterings exist [1].
The first is based on entropy or some other information mea-
sure, judging the mutual information between two clusterings
(e.g. [2]). The second is based on set-matching, i.e., mapping
each cluster from the first clustering to the most similar cluster
in the second clustering and computing recall, precision or
some other measure (e.g. [3]). The third is based on pair
counting (e.g. [4]). Since pairing objects has a good potential
to be visualized, our tool facilitates these possibilities. Our
visual representation is therefore based on pair counting,
resulting in better insight on the differences of clusterings
while complementing common clustering evaluation metrics.

II. SYSTEM

Trying to compare clustering results on the basis of data
points and their assigned cluster often fails because we can

not decide whether the assignment in one clustering is right or
wrong compared to the other clustering result. Often, different
assignments may be equally meaningful and could actually re-
veal hidden truths about a data set. How to evaluate clusterings
in a meaningful manner remains an open research question
[5], [6]. An approach to evaluation and to study common
and different decisions between two (or more) clusterings is
the examination of relationships of each pair of data points
in the data set, resulting in a set of n∗(n−1)

2 pairs for n
data objects. Offering a description of each cluster by the
pairs being clustered together results in a homogeneous set
representing the similarity of those objects and comparing
the assessment of similarity by different clusterings (or a
clustering and a given ground truth). We visualize all these
pairs as segments in a circle, as depicted schematically in
Figure 1a. By assigning a different shade to each cluster, we
paint each pair being represented by one segment of the circle
according to its assigned cluster as in Figure 1c. Unshaded
pairs (white) illustrate pairs not available in the clustering (i.e.,
that are separated in this clustering). This way, we visualize
the size and the amount of clusters generated.

When using the pair representation of clusterings, compar-
ing clusterings is based on comparing their common and their
different sets of pairs. Therefore our visualization is extended
by another ring in the circle visualization maintaining the order

a b c

Fig. 1. a) all possible pairs drawn on a circle by dividing it into segments. b)
set of five data points divided into two clusters and their representing pairs.
c) pairs shaded to their corresponding cluster color.

a b c

Fig. 2. Comparing cluster results of five data points. a) clustering 1. b)
clustering 2. c) combination of two clusterings using our visualization where
the inner circle represents clustering 1 (a), the outer circle clustering 2 (b).
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TABLE I
CATEGORIES IN PAIRING CLUSTERED OBJECTS.

Clustering Pairs in P Pairs not in P
Pairs in Q a := Pairs in both b := Pairs in Q
Pairs not in Q c := Pairs in P d := Pairs in none

TABLE II
SOME WELL KNOWN PAIR COUNTING FORMULAS.

precision recall F-measure Rand Jaccard
a

a+c
a

a+b
2a

2a+b+c
a+d

a+b+c+d
a

a+b+c

of the pairs. Analogously to the first ring, the added clustering
pairs are shaded according to their cluster color (as in Figure
2c). Each divided cluster results in white spaces representing
missing pairs. Hence by the circle segments visualization,
the fragmentation and the similarity of clusterings is visually
accessible in an intuitive way.

Omitting the cluster association of the pairs, we have
four categories: pairs that are common in both clusterings
(completely shaded segments), pairs that do not exist in either
clustering (completely white segments), pairs only present in
the first clustering (segments with white space in second ring),
and pairs present only in the second clustering (segments
with white space in first ring). See Figure 2c and Table I.
These categories are the working set of all pair counting
measure indices. By counting the pairs in each category, we
get an indicator for agreement and disagreement of the two
clusterings. The well known asymmetric measures precision
and recall are calculated as shown in Table II. For comparison
of two clusterings without a given gold standard, symmetric
measures like the F-measure (combining precision and recall)
or the Jaccard-index [7] are more recommendable. The Rand-
index [8], being defined as the ratio of the pairs in both and
the pairs in no clustering to all pairs, states the probability
that two objects are treated alike in both clusterings. In their
evaluation of similarity measures, Pfitzner et al. [4] list over 40
different pair counting metrics, all giving different estimations
for the similarity of two clusterings, requiring an evaluation
of the metrics themselves.

Besides the variety of measure indices, the treatment of
noise data points or noise clusters remains a field for research.
Comparison of algorithms that have a notion of noise to
algorithms that do not, requires adjustments in the evaluation
process of pair counting to make a fair judgement between
them. Our visualization displays the information in the process
of creating the pairs being used by the measure indices before
their data gets aggregated in the counting process. Therefore
it provides us one picture as a reference for all pair counting
metrics and the chance to investigate the fragmentation in de-
tail, supporting comprehension and evaluation of the different
clustering similarity values. Besides evaluating metrics, the
proposed visualization supports the analysis and comparison
of the clusterings itself.

The visualization (Figure 3) sorts pairs by the first cluster-
result (inner ring), representing the reference clustering, then

Fig. 3. Screenshot of the final circle segments visualization of two clusterings,
each having three clusters.

a b c

Fig. 4. Mouse hover on each segment and ring highlights the cluster.

by the second result and so forth to group them into segments
that are clustered the same way. The size of each segment is
relative to its pair count, the red lines are inserted to empha-
size the borders between primary segments. The complexity
depends on the clustering results, but not on the actual data
set size. This representation enables us to visually estimate
the metrics by comparing the sizes of the involved segments.
The complexity of the fragmentation and the dissimilarity of
the clusterings is displayed. Adding hover interaction to the
visualization highlights the selected cluster as demonstrated in
Figure 4, enhancing the recognition of the distributed cluster.

Being an abstract visualization, clusters may be compared
in the circle segments visualization. However, evaluating the
actual quality of the clusterings requires a reference to the
applied data set. An additionally complementing visualization
representing the data set should be used in close conjunction.
Therefore we have implemented the proposed visualization in
the ELKI framework [9]–[12], along with release 0.5, that sup-
plies a wide range of algorithms and visualizations. By adding,
e.g., a scatterplot to our tool, as depicted in Figure 5, we
are able to select segments of the visualization and highlight
the corresponding data points in some visualization (here a
simple scatterplot) of the data set. To track the selection, each
segment is colored corresponding to the objects, allowing a
deeper exploration of the cluster fragmentation in relation to
the data set properties and human intuition.

Because we are mapping pairs to data points, when selecting
a segment and highlighting it in the scatterplot the selection
needs an adjustment. By selecting segments with pairs only
existent in one clustering, one actually selects two different
segments that describe the missing pairs in the other clustering.
Thus, the selection seen in Figure 5 may be done by selecting
each segment on its own or by selecting the last (largest)
segment of the circle.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Dim. 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dim. 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Dim. 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dim. 2

Fig. 5. Scatterplot with symbols representing the clusters of the reference
clustering. The colors highlight pair segments the two clusterings agree upon.
The reference clustering is EM (k = 3; δ = 0), compared to (second ring)
DBSCAN (ε = 0.1;minPts = 5).
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Fig. 6. Reference cluster being split by the compared clustering.

III. DEMONSTRATION SCENARIO

Here we sketch two examples1 of clustering comparison.
The first one compares EM-clustering [13] and DBSCAN [14]
on a Gaussian data set with different densities and close
clusters. The second example compares EM with k-means [15]
on a data set with different densities and background scatter.
Both data sets are very favorable to EM (which achieves
near perfect results) and which we will therefore use in both
scenarios as reference clustering on the inner ring.

In Figure 5, a comparison of EM and DBSCAN is shown.
DBSCAN merged two clusters of EM (red and yellow) into
one, producing a large pair segment nonexistent in the EM re-
sult (bottom segment). The corresponding scatterplot supports
this analysis that for DBSCAN the two clusters were density-
connected (and thus maybe the ε parameter was chosen too
large). On the other hand, Figure 6 shows the first EM cluster
selected, which is fragmented by DBSCAN into the denser
core (yellow) of the cluster and a noise cluster (red) for
the less dense outer objects (which could be included by
choosing a larger ε). The missing pairs of DBSCAN are those
connecting red and yellow objects. As stated in [4], a measure
index should rate both clusterings as nearly equal since one
clustering just merges two clusters of the other clustering. It
could be worse, e.g., two clusters could be mixed up leading

1Example data sets available at http://elki.dbs.ifi.lmu.de/

TABLE III
RESULTING INDICES OF EM COMPARED TO DBSCAN

precision 0.5616992582602832
recall 0.9066666666666666
F-measure 0.6936608722806287
Rand 0.7366442953020135
Jaccard 0.5309960159362550
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Fig. 7. Reference clustering is EM (k = 6; δ = 0), second ring is k-means
(k = 6; δ = 0).

to a much stronger disagreement between both clusterings in
terms of pairs. Comparing some related indices shown in Table
III, we might judge the Rand-index or the recall as being
the best guess for similarity, but the judgment solely based
on the numerical measures remains inconclusive. Reasons for
the cluster differences lie in DBSCAN having problems with
different densities in the data set (see the discussion in [16]);
it cannot be parametrized to detect all clusters correctly at
the same time, while Gaussian clusters are expected to being
easily modeled by the EM approach.

The second scenario uses a data set with different densities
and background scatter. EM clustering does not have a special
treatment of noise, however increasing k by 1 provides good
results: EM indeed produces a cluster with low density and
high variance that contains most noise objects. The same trick
cannot work for k-means, so we chose the exact k there
for best results. Because of the number of clusters and their
size, about three quarters of pairs exist in neither clustering
as seen in Figure 7. There is a strong agreement in most
clusters, resulting in large shared segments and thus a high
similarity value in many popular measure indices (Table IV).
Inspecting the segment containing most of the background
scatter, we can see that k-means does not really handle noise,
which is distributed to the various actual clusters. By hovering
over the larger segments in the second ring, the highlights
show that they are part of one of the larger EM clusters
except for one tiny segment containing the noise object pairs
in the corresponding EM cluster and an unmatched segment
containing the pairs with one object in the cluster and the other
in the background scatter. This is a known defect of k-means
clustering that it will assign such noise objects to the nearest
cluster found. To increase readability, the segment containing
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Fig. 8. Hiding of unclustered pairs increases readability in more complex
scenarios.

TABLE IV
RESULTING INDICES OF EM COMPARING TO k-MEANS

precision 0.8185578744994065
recall 0.944720079641935
F-measure 0.881337059843367
Rand 0.9558548790658883
Jaccard 0.9545458224405721

nonexistent pairs can be hidden, as shown in Figure 8. Here
the problem treating noise data points becomes more visible.
The scatterplot shows the EM cluster in blue and the larger
extent of the k-means cluster (red and olive objects).

This scenario demonstrates the ambiguity of handling noise
by clustering algorithms that do not have an explicit notion
of noise. EM adapts surprisingly well to this challenge when
given an extra cluster to use. The same trick did not work for
k-means, which just includes noise objects in the nearest clus-
ter. The corresponding measure indices in Table IV however
rate both clusterings as being more or less equal, but with
a higher amount of noise the rating would likely be worse.
Nonetheless, the reasons for their differences are identified by
means of the visualizations.

IV. CONCLUSIONS

We have introduced our visualization tool and demon-
strated the application on two clustering comparison examples.
As demonstrated, our circle segments visualization supports
clustering comparison as well as metrical evaluation in an
accessible approach. The visualization is capable of a quan-
titative visualization of the differences in clustering results.
Since its complexity depends on the dissimilarity and number
of clusters only, it can also be used for large and high-
dimensional data sets that cannot be easily visualized by other
means and still provide the analyst with useful insights such
as clusters being merged or split.

The proposed visualization can also be expanded to multiple
clusterings as shown in Figure 9. The circular layout is
beneficial here, since fragmentation increases in the outer
circles. In general all possible pair subsets are visualized,
resulting in a unified representation for all pair counting
measures and still having a higher information value than the

Fig. 9. Visualizing more than 2 clusterings.

numerical measures themselves while also supporting further
exploration of the details. The interactive visualization using
segments enables the researcher to obtain knowledge about
the relation of clusters to each other, such as clusters being
merged, divided or distributed into multiple fragments by the
other result. In particular large pair segments that are missing
from one result but present in the other are indicative of such
structural differences in the cluster results.

This evaluation tool comes along with ELKI release 0.5,
available at: http://elki.dbs.ifi.lmu.de.
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