

Subspace Clustering, Ensemble Clustering, Alternative Clustering, Multiview Clustering: What Can We Learn From Each Other?

MultiClust@KDD 2010

Hans-Peter Kriegel, Arthur Zimek

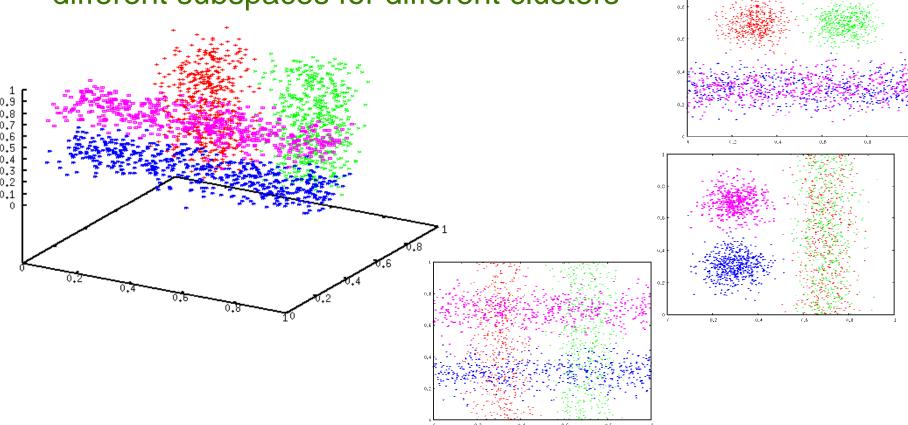
Ludwig-Maximilians-Universität München Munich, Germany

http://www.dbs.ifi.lmu.de

{kriegel, zimek}@dbs.ifi.lmu.de

Outline

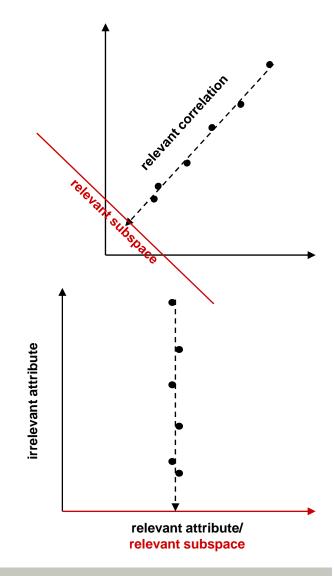
- 1. Subspace Clustering
- 2. Ensemble Clustering
- 3. Alternative Clustering
- 4. Multiview Clustering
- 5. Discussion



Subspace Clustering

- Task: identify clusters of similar objects
- similarity defined w.r.t. a certain subspace of the data space

different subspaces for different clusters



Subspace Clustering

- Subspaces: different
 - selection
 - weighting
 - combination
 - of attributes
- learn subspace and clustering simultaneously (interdepency)
- strategies:
 - top-down (learn spatial characteristics of initially built sets of objects)
 - bottom-up (learn 1-d clusters, combine them to 2-d clusters, etc. (APRIORI))
 => many irrelevant clusters

Ensemble Clustering

- basic idea: combine different clusterings to obtain one single, more reliable clustering
- tasks:
 - how to create diverse clusterings
 - how to combine different clusterings
- induce diversity of clusterings
 - use different feature-subsets
 - use different database subsets
 - use different clustering algorithms
- correspondence between clusterings
 - useful for judging on redundancy of clusters?
 - a lot of different answers but: could it not be that different clusterings are just different, yet both meaningful?

Alternative Clustering

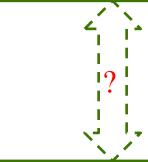
- given a clustering, use diversity or non-redundancy as a constraint to find a different clustering
- techniques:
 - ensemble techniques
 - use different subspaces
- relationship to subspace clustering:
 - subspace clustering can learn from the treatment of non-redundancy
 - alternative clustering can learn to allow for a certain level of redundancy

Multiview Clustering

- seek different clusterings in different subspaces
- special case of alternative clustering?
 - constraint: orthogonality of subspaces
- special case of subspace clustering?
 - allowing maximal overlap of clusters
 - seeking minimally redundant clusters by accommodating different concepts
- emphasizes the observation known from subspace clustering:
 - highly overlapping clusters in different subspaces need not be redundant nor meaningless

Discussion

subspace clustering


- •goal: different clusters in different subspaces
- •problem: redundancy of clusters (same clusters reported for different subspaces)

ensemble clustering

- •goal: different subspaces shall induce the same clusters
- •problem: correspondence of clusterings? What about actually different clusterings?

alternative clustering

- •goal: given a clustering, find a different clustering
- •problem: which level of redundancy is admissible?

multiview clustering

- •goal: find different cluster concepts in different subspaces
- •problem: balance between admissible overlap of clusters and difference between concepts

Discussion

- how should we treat diversity of clustering solutions?
 - should diverse clusterings always be unified (ensemble)?
 - under which conditions is a unification of diverse clusterings meaningful?
- can we learn from diversity itself?
 - again ensemble: exceptional clustering in one subspace will be outnumbered and lost – could it not be especially interesting?
- how to treat redundancy (esp. overlap)?
 - when does a cluster qualify as redundant w.r.t. another cluster, when does it represent a different concept (despite a certain overlap)?

- how to assess similarity between clustering solutions?
 - possible overlap between clusters makes this problem really difficult
 - no simple mapping