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Abstract. While subspace clustering emerged as an application of pat-
tern mining and some of its early advances have probably been inspired
by developments in pattern mining, over the years both fields progressed
rather independently. In this paper, we identify a number of recent de-
velopments in pattern mining that are likely to be applicable to alleviate
or solve current problems in subspace clustering and vice versa.

1 Introduction

Arguably, the two main proponents of exploratory data mining research are
clustering and pattern mining. Both share the aim of the field—extracting in-
teresting, non-trivial, and previously unknown knowledge from data—yet, they
are orthogonal in their approach, or at least appear so at first glance.

Pattern mining, to start with, is concerned with developing theory and algo-
rithms for identifying groups of attributes and some selection criteria on those;
such that the most ‘interesting’ attribute-values combinations in the data are re-
turned. That is, by that selection we identify objects in the data that somehow
stand out. The prototypical example is supermarket basket analysis, in which by
frequent itemset mining we identify items that are frequently sold together–with
the infamous beer and nappies as an example of an interesting pattern.

Clustering, on the other hand, in general aims at finding groups of similar
objects in a database. Aside from algorithmic variations in the process of identi-
fying these groups, the major differences between various clustering approaches
is in the actual meaning of ‘similar’. Especially in high dimensional data the
notion of similarity is not a trivial one. The so-called ‘curse of dimensionality’ is
often given as the main motivation for ‘subspace clustering’ [34], where our goal
is to identify both sets of objects, as well as subsets of attributes (subspaces),
on which those objects are measured to be highly similar. As such, we see that
both pattern mining and subspace clustering identify sub-parts of the data.

In this paper we explore and discuss a number of connections between these
two active fields of research. We argue that research in subspace clustering,



having a common origin with pattern mining and sharing some early ideas, has
deviated from the route of pattern mining subsequently. Interestingly, both fields
now face problems already studied by the other. Here, we would like to point out
interesting recent research topics on pattern mining where research on subspace
clustering can possibly benefit from, and vice versa. For example, the explosion in
numbers of results, and reducing their redundancy, are currently open problems
in subspace clustering but have recently been studied in detail by the pattern
mining community. On the other hand, the notion of alternative results, as well
as the generalization beyond binary data, are topics where pattern miners may
draw much inspiration from recent work in (subspace) clustering.

The goal of this paper is to identify a number of developments in these fields
that should not go unnoticed; we are convinced that solutions for pattern mining
problems are applicable in subspace clustering, and vice versa. In other words,
it is time to meet the relatives.

The remainder of this paper is organized as follows. First, we discuss the
background of subspace clustering, and how it relates to pattern mining. Next,
we go into the similarities between their results. Section 4 discusses developments
in pattern mining that are interesting with regard to subspace clustering—and
vice versa in Section 5. We round up with conclusions in Section 6.

2 It’s a Family Affair

2.1 The Curse

The so-called ‘curse of dimensionality’ is often credited for causing problems
in similarity computations in high dimensional data, and, hence, is given as
motivation for specialized approaches such as ‘subspace clustering’ [34]. Let us
consider two aspects of the ‘curse’ that are often confused in the literature: (i)
the concentration effect of Lp-norms and (ii) the presence of irrelevant attributes.

Regarding the concentration effect (i), the key result of [10] states that, if
the ratio of the variance of the length of any point vector x ∈ Rd (denoted by
‖x‖) with the length of the mean point vector (denoted by E [‖x‖]) converges
to zero with increasing data dimensionality, then the proportional difference
between the farthest-point distance Dmax and the closest-point distance Dmin

(the relative contrast) vanishes, i.e., all distances concentrate around a mean, and
look alike. This observation is often quoted for motivating subspace clustering as
a specialized procedure. It should be noted, though, that the problem is neither
well enough understood (see e.g. [20]) nor actually relevant when the data follows
different, well separated distributions [8, 9, 29].

Regarding the separation of clusters, the second problem (ii) is far more
important for subspace clustering: In order to find structures describing phe-
nomena, abundances of highly detailed data are collected. Among the features
of a high dimensional data set, for any given query object, many attributes can
be expected to be irrelevant to describing that object. Irrelevant attributes can
easily obscure clusters that are clearly visible when we consider only the relevant



‘subspace’ of the dataset. Hence, they interfere with the performance of similar-
ity measures in general, but in a far more fundamental way for clustering. The
relevance of certain attributes may differ for different groups of objects within
the same data set. Thus, many subsets of objects are defined only by some of the
available attributes, and the irrelevant attributes (‘noise’) will interfere with the
efforts to find these subsets. This second problem is actually the true motivation
for designing specialized methods to look for clusters in subspaces of a dataset.

2.2 Variants

In general, in subspace clustering similarity is defined in some relation to subsets
or combinations of attributes or dimensions of database objects. Hence, a clus-
tering with n clusters for a database D ×A, with the set of objects D and with
the full set of attributes A, can be seen as a set C = {(C1,A1), . . . , (Cn,An)},
where Ci ⊆ D and Ai ⊆ A, i.e., a cluster is defined w.r.t. a set of objects and
w.r.t. a set of attributes (i.e., a subspace).

Subspace clustering algorithms are typically split into two groups; in ‘pro-
jected clustering’ objects belong to at most one cluster, while ‘subspace cluster-
ing’ (in a more narrow sense) seeks to find all possible clusters in all available
subspaces, allowing overlap [34]. The distinction (and terminology) originates
from the two pioneering papers in the field, namely clique [2] for ‘subspace
clustering’ and proclus [1] for projected clustering; and the two definitions al-
low a broad field of hybrids. Since we are interested in the relationship between
pattern mining and subspace clustering, we will let aside projected clustering
and hybrid approaches and concentrate on subspace clustering in the narrower
sense as defined in [2]. In this setting, subspace clustering is usually related to
a bottom-up traversal of the search space of all possible subspaces, i.e., starting
with all one dimensional subspaces, two-dimensional combinations of these sub-
spaces, three dimensional combinations of the two dimensional subspaces and so
on, all (relevant) subspaces are searched for clusters residing therein.

Considering clique, we find the intuition of subspace clustering promoted
there closely related to pattern mining. To this end, we consider frequent itemset
mining [3], in which we consider binary transaction data, where transactions
are sets of items A, B, C, etc. The key idea of apriori [3] is to start with
itemsets of size 1 that are frequent, and exclude all itemsets from the search
that cannot be frequent anymore, given the knowledge which smaller itemsets are
frequent. For example, if we count a 1-itemset containing A less than the given
minimum support threshold, all 2-itemsets, 3-itemsets, etc. containing A (e.g.,
{A,B}, {A,C}, {A,B,C}) cannot be frequent either and need not be considered.
While theoretically the search space remains exponential, in practice searching
becomes feasible even for very large datasets.

Transferring this problem to subspace clustering, each attribute represents
an item, and each subspace cluster is then an itemset containing the items repre-
senting the attributes of the subspace. This way, finding itemsets with support 1
relates to finding all combinations of attributes constituting a subspace of at least



one cluster. This observation is the rationale of most bottom-up subspace clus-
tering approaches: subspaces containing clusters are determined starting from all
1-dimensional subspaces accommodating at least one cluster, employing a search
strategy similar to that of itemset mining algorithms. To apply any efficient
algorithm, the cluster criterion must implement a downward closure property
(i.e. (anti-)monotonicity): If subspace Ai contains a cluster, then any subspace
Aj ⊆ Ai must also contain a cluster. The anti-monotonic reverse implication,
if a subspace Aj does not contain a cluster, then any superspace Ai ⊇ Aj also
cannot contain a cluster, can subsequently be used for pruning.

Clearly, this is a rather naïve use of the concept of frequent itemsets in
subspace clustering. What constitutes a good subspace clustering result is defined
here apparently in close relationship to the design of the algorithm, i.e., the
desired result appears to be defined according to the expected result (as opposed
to: in accordance to what makes sense) — see the discussion in [34]. Resulting
clusters are usually highly redundant and, hence, mostly useless.

This issue is strongly related to the so-called pattern explosion. Taking fre-
quent itemset mining as an example, we see that for high minimal support thresh-
olds, only trivial results are returned, but that for lower thresholds we end up
with enormous amounts of results—a collection that is highly redundant, and
many of the returned patterns are variations of the same theme. Recently, pattern
miners have started to acknowledge they have been asking the wrong question:
instead of asking for all patterns that satisfy some constraints, we should ask for
small, non-redundant, and high quality sets of patterns—where by high-quality
we mean that each of the patterns in the set satisfy the thresholds we set on
interestingness or similarity, and the set is optimal with regard to some criterion,
e.g. mutual information [32], compression [49], area [21].

Research on subspace clustering inherited all the deficiencies from this origi-
nally ill-posed problem. However, early research on subspace clustering as follow-
ups of clique apparently also tried to transfer improvements from pattern min-
ing. As an example, enclus [14] uses several quality criteria for subspaces, not
only implementing the downward closure property, but also an upward closure
(i.e., allowing search for interesting subspaces as specializations as well as gen-
eralizations). This most probably relates to the concept of positive and negative
borders known from closed frequent itemsets [46]. Both can be seen as imple-
mentations of the classical concept of version spaces [38].

3 I Say Pattern, You Say Subspace Cluster

Methods aside, there are two notions we have to discuss that do, or do not, make
the two fields different. First and foremost, what is a result? And, second, can
we relate interestingness and similarity? To start with the former, in subspace
clustering, a single result defined by the Cartesian product of objects C ⊆ D and
attributes A ⊆ A. In order to be considered as a result, each of the objects in the
selection should be similar to the others, over the selected attributes, according
to the employed similarity function. In order to make a natural connection to



pattern mining, we adopt a visual approach; if we are allowed to re-order both
attributes and objects freely, we can reorder D and A such that C and A define a
rectangle in the data, or a tile. In pattern mining, the notion of a tile has become
very important in recent years [17, 21, 23, 33]. Originally the definition of a pat-
tern was very much along the lines of an SQL query, posing selection criteria on
which objects in the data are considered to support the pattern or not. As such,
beyond whether they contribute to such a global statistic, the selected objects
were not really taken into account. In many recent papers, however, the sup-
porting objects are explicitly taken into account, and by doing so, patterns also
naturally define tiles. In the next section we will link this approach to the reduc-
tion of redundancy. So, both fields identify tiles, sub-parts of the data. However,
both have different ways of arriving at these tiles. In pattern mining, results are
typically selected by some measure of ‘interestingness’—of which support, the
number of selected objects, is the most well-known example. In subspace clus-
tering, on the other hand, we measure results by how similar the selected objects
are over the considered attributes. Clearly, while this may lead to discovering
rather different tiles, it is important to realize that both approaches do find tiles,
and provide some statistics for the contents of each tile.

We observe that in pattern mining the selection of the objects ‘belonging’
to the pattern is very strict—and that as such those objects will exhibit high
similarity over the subspace of attributes the pattern identifies. For example, in
standard frequent itemset mining, transactions (i.e., objects) are only selected if
they are a strict superset of the pattern at hand—and in fault-tolerant itemset
mining typically only very few attribute-value combinations are allowed to de-
viate from the template the pattern identifies. Linking this to similarity, in this
strict selection setting, it is easy to see that for the attributes identified by the
pattern, the selected objects are highly similar. The same also holds for subgroup
discovery, a supervised branch of pattern mining. In subgroup discovery the pat-
terns typically strongly resemble SQL range-based selection queries, where the
goal is to identify those patterns (intention) that select objects (extension) that
correlate strongly to some target attribute(s). Intuitively, the more strict the
selection criteria are per attribute, the more alike the selected objects will be on
those attributes. So, in the traditional sense, patterns identified as interesting by
a measure using support, are highly likely to correspond to highly-similar sub-
space clusters, the more strict conditions the pattern defines on its attributes.
The other way around, we can say that the higher the similarity of a subspace
cluster, the easier it will be to define a pattern that covers the same area of
the database. And, the larger this highly-similar subspace cluster is, the more
likely it is that it will be discovered by pattern mining using any support-based
interestingness measure.

Besides this link, it is interesting to consider what the main differences are.
In our view, it is a matter of perspective; whether to take a truly local stance
at the objects, and from within a tile, like in subspace clustering, or, whether to
take a slightly more global stance and look at how we can select those objects
by defining conditions on the attributes. Further, we remark that both interest-



ingness and similarity are very vague concepts, for which many proposals exist.
A unifying theory, likely from a statistical point of view, would be very welcome.

4 Advances of Interest in Pattern Mining

In this section we discuss some recent advances in pattern mining research that
may likewise be applicable for issues in subspace clustering.

4.1 Summarizing Sets of Patterns

As touched upon in Section 2, reducing redundancy has been studied for a long
period of time in pattern mining. Very roughly speaking, two main approaches
can be distinguished: summarizing the result set, and summarizing the data.

In this subsection we discuss the former, in which we find well-known exam-
ples. The main idea of this approach is that we have a set of results F , consisting
of results that have passed the constraints that we have set, e.g. they all pass
the interestingness threshold. Now, with the goal of reducing redundancy in F ,
we want to select a subset S ⊆ F such that S contains as much information on
the whole of F while being minimal in size.

Perhaps the most well-known examples of this approach are closed [46] and
maximal [7] frequent itemsets, by which we only allow elements X ∈ F into S
for which no superset exists that has the same support, or no superset exists
that does not meet the mining constraints, respectively. As such, for closed sets,
given S we can reconstruct F without loss of information—and for maximal
sets we can reconstruct only the itemsets, not their frequencies. Non-derivable
itemsets [13] follow a slightly different approach, and only provide those itemsets
for which their frequency cannot be derived from the rest. While the concepts of
closed and maximal have been applied in subspace clustering, non-derivability
has not been explored yet, to the best of our knowledge.

Reduction by closure only works well when data are highly structured, and it
deteriorates rapidly with noise. A recent improvement is margin-closedness [39],
where we consider elements into the closure for which our measurement falls
within a given margin. This provides strong reduction in redundancy, and higher
noise resistance; we expect it to be applicable for subspace clusters.

Perhaps not trivially translatable to subspace clusters, another branch of
summarization is that of picking or creating a number of representative results.
Yan et al. [51] choose S such that the error of predicting the frequencies in F is
minimized. Here, it may well be reasonable to replace frequency with similarity.
There are some attempts in this direction, e.g. in biclustering [48].

More examples exist, but for reasons of space, we continue to a more impor-
tant development of reducing redundancy.

4.2 Pattern Set Mining

While the above-mentioned techniques do reduce redundancy, they typically still
result in large collections of patterns, that still do contain many variations of the



same theme. As stated in Section 2, a recent major insight in pattern mining is
that we were asking the wrong question. Instead of asking for all patterns that
satisfy some constraints, we should be asking for a small non-redundant group of
high-quality patterns. With this insight, the attention shifted from attempting
to summarize the full result F , to provide a good summarization of the data.
In terms of subspace clustering, this means that we would select that group of
subspace clusters such that we can approximate (explain, describe, etc.) the data
optimally. Here we discuss a few examples of such pattern set mining techniques
that we think are applicable to subspace clustering in varying degrees.

The most straightforward technique we discuss is tiling [21]. It proposes to not
just consider itemsets, but also the transactions they occur in—the same notion
we adopted in Section 3. The main idea here is that patterns that cover a large
area are more interesting than patterns of a small area, where area is defined
as the product of the number of items and number of transactions that support
the itemset. Most importantly, the authors give an algorithm for approximating
the optimal tiling of the data—those k tiles that together cover as much of the
data as possible. As the paper only considers exact tiles, for which exactly what
the data values are, namely 1s, the returned tilings are good summarizations of
the data. It is not trivially translated to subspace clustering. One could extract
a cluster profile, e.g. a centroid, and take the deviation between the current
summary and the real data into account—something that one could minimize.

In this direction, other promising approaches take cues from Information
Theory, the Minimum Description Length principle [25] in particular. That is,
they approach the pattern set selection problem from the perspective of lossless
compression; the best set of patterns is that set of patterns that together com-
press the data best. Gionis et al. [23] propose a hierarchical model for discovering
informative regions (patterns, subspaces) in the data by employing MDL. It does
not consider a candidate set F , but looks for interesting regions directly, assum-
ing a given fixed order of the attributes and objects. The hierarchical nature
potentially does link strongly to subspace clustering, where we could consider
nested clusters—a related method for clusters was proposed by Böhm et al [12].
Siebes et al. [49] proposed the Krimp algorithm to approximate the set of item-
sets that together optimally compress the data from a candidate collection F .
The resulting code tables have been shown to be of very high quality, while
reducing the number of patterns up to 7 orders of magnitude [49]. In turn, Kon-
tonasios and De Bie [33] combine the ideas of MDL and Tiling, although they
do not simply accumulate tiles to maximize the covered area of the database.
Instead, they measure how informative candidate results are with regard to a
static probabilistic background model, while also taking their complexity into
account. In other words, how many bits does adding result X save us when
explaining the data, and how many does it cost to understand X.

Each of the above methods have, as of yet, only been defined for (single and
multi-table) binary data. However, MDL theory does exist for richer data types,
and we would like to point out the strong potential for reducing redundancy
in subspace clustering by aiming at that set of subspace clusters that together



describe the data best. That is, those clusters by which we can encode the
data and the model most succinctly. Note that this approach naturally allows
for overlapping clusters, as well as refinements (a big general cluster, and a
smaller sub-region of it)—results will be selected if they provide sufficient extra
information by which the data can be compressed better than without, while
not costing too much to be described themselves.

4.3 Significance and Randomization

Perhaps the largest problem in exploratory data mining is validation. Unlike in
settings where there is a clear formal goal, such as in many supervised machine
learning, our goal is as ill-defined as to find ‘interesting things’. Like in clustering
a plethora of different similarity measures have been considered, all of which
may identify some interesting interplay between objects, also in pattern mining
a broad spectrum of interestingness measures have been discussed, yet there is
no gold standard by which we can compare results.

One approach that recently received ample attention in pattern mining is
that of statistical significance. If a result can be easily explained by background
knowledge, it will most likely not be interesting to the end user, never mind how
large its support or similarity. Webb [50] proposes to rank patterns depending on
their individual statistical significance. A more general framework was proposed
by Gionis et al. [22], who propose to investigate significance of results in general
through randomization. To this end, they introduce swap randomization as a
means to sample random binary datasets of the same row and column margins
as the original data, and so calculate empirical p-values. Ojala et al. [44,45] gave
variants for numerical data, easing the use of the model for subspace clustering.
Hanhijarvi et al. [28] extended the framework such that more complex back-
ground information, such as cluster densities and itemset frequencies, can be
entered into the model—making the approach applicable for iterative data min-
ing. De Bie [17] proposed to model these probability distributions over datasets
analytically, by employing the Maximum Entropy principle. A main advantage
is that this allows for the calculation of exact p-values.

As of yet, with the exception of the latter, each of the above have already
been formalized for a wide variety of data types, and, hence, we expect these
methods to be rather easily applicable for assessing whether a subspace cluster,
subspace clustering or multiple clustering is significant—whether in light of some
basic properties of the data, or with regard to more involved known structure.

5 Interesting Advances in Subspace Clustering

In this section we discuss advances in subspace clustering that may be of partic-
ular worth in progressing pattern mining research.



5.1 Half of Success is Knowing When to Stop

In early approaches to subspace clustering, the fixed grid, that allows an easy
translation to frequent itemsets, introduces bias towards certain cluster prop-
erties. Thus, it has found major interest in research on subspace clustering.
The mafia [43] method uses an adaptive grid, while its generation of subspace
clusters is similar to clique. Another variant, nCluster [37], allows overlapping
windows of length δ as 1-dimensional units of the grid. subclu [31] uses the db-
scan cluster model of density-connected sets [18], letting go the grid-approach
completely. Nevertheless, density-connected sets satisfy the downward closure
property. This enables subclu to search for density-based clusters in subspaces
also in an apriori-like style. A global density threshold, as used by subclu and
the grid-based approaches, leads to a bias towards a certain dimensionality: a
tighter threshold separates clusters from noise well in low dimensions, but tends
to loose clusters in higher dimensions. A more relaxed threshold detects high di-
mensional clusters but produces an excessive amount of low dimensional clusters.
This problem has been of major interest in the research on subspace clustering
in the recent years. See e.g. [4, 42], where the density-threshold is adapted in
turn to the dimensionality of the subspace currently being scrutinized during
the run of the algorithm.

A problem closely related to choosing the appropriate density level is the
redundancy issue, that also found much interest recently [5, 26, 41]. These ap-
proaches aim at reporting only the most representative of a couple of redundant
subspace clusters. While technically the approaches differ, in concept, adaptive
density-thresholds show high similarity with selection of patterns based on sta-
tistical significance [33, 50]. Significance of subspace clusters, though, has only
be addressed once so far [40]. Hence, we regard it as highly likely that both
approaches can learn from each other’s endeavours.

5.2 Alternatively...

A recent development in both fields is finding alternatives to results. The tech-
niques we employ in exploratory data mining can only seldom be shown to
provide optimal results, instead typically returning good results heuristically.
However, while one good result might shed light on one aspect of the data, it
might ignore other parts of the data—for which other results will be informative.
A clustering result that can be judged valid by known structures may even be
completely uninteresting [19]. Hence a proposal to improve cluster evaluation
relies on the deviation of a clustering from known structures instead of judging
the coverage of known structures [35].

This is almost literally the approach taken in the subfield of alternative clus-
tering, where one wants to discover a good clustering that is orthogonal from
what we already found, or, alternatively, where we want to find n good cluster-
ings each of which be different from any other. Approaches for finding alterna-
tive clusterings mostly use ensemble techniques [6,15,16,24]. A key requirement
for building good ensembles is a source of diversity for the ensemble members.



Clearly, using different feature subsets (i.e., subspaces) can be a very good source
of diversity and actually has occasionally been used in alternative clustering as
one possibility to find different clustering solutions [47]. Alternative clustering
approaches typically seek diversity constrained by non-redundancy. Hence, al-
lowing some degree of redundancy could be meaningful, such as allowing overlap
between clusters. In different subspaces, one subset of objects could belong to two
different, yet meaningful, clusters. While this would increase their redundancy,
reporting both of them instead of only one would not necessarily be useless.
Considerations in this direction can be found w.r.t. subspace clustering [27].

Also it has been conceded that preserving known properties or concepts is
desirable when seeking different clusters [47]. As searching for subspaces that
are (at least partially) different from subspaces of already found clusters, the
more specialized area of multiview clustering [11, 30] is also of interest here,
and can be seen as a special case of seeking alternative results. The constraint
here is the orthogonality of subspaces. It can also be seen as a special case of
subspace clustering allowing maximal overlap yet seeking minimally redundant
clusters by accommodating different concepts (as proposed e.g. in [27]). These
approaches highlight that highly overlapping clusters in different subspaces (i.e.,
certain subsets of objects may belong to several clusters simultaneously) need
not be redundant nor meaningless (see also the discussion in [19,36]).

6 Conclusion

There exist strong links between Subspace Clustering and Pattern Mining, al-
though the topics of research within the two fields have diverged over time. We
argued the case that both fields are not as different as they might think, and
moreover, that both can learn much from the experience gained by the other. In
other words, we say it is time for the two fields to meet again. To this end, we
gave a (far from complete) overview of proposals from the one field that we find
have strong potential to advance research in the other, and vice versa.
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