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Motivation

• Hawkins Definition:
“An outlier is an observation which deviates so much from the other 
observations as to arouse suspicions that it was generated by a 
different mechanism.”

• Collecting data with high dimensionality
“curse of dimensionality”

• two aspects here:
– Euclidean distances (as commonly used) loose their expressiveness: 

no outlier can be detected that deviates considerably from the 
majority of points in comparison to other points

– a “generating mechanism” to identify may be responsible for a subset 
of the features only (local feature relevance)
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Motivation

• try to find outliers in 
subspaces, i.e., based on 
the subset of features 
related to a “generating 
mechanism”

• subspace {A1}:
o is an outlier

• subspace {A2}:
o is not an outlier

• full-dimensional space 
{A1, A2}:
o is not an outlier

• distribution of attribute values in A2 appears to be not 
relevant for the “mechanism” in question
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Subspace Outlier

general idea:
• assign a set of reference points to a point o

(e.g., k-nearest neighbors – but keep in mind the “curse of 
dimensionality”: local feature relevance vs. meaningful 
distances)

• find the subspace spanned by these reference points 
(allowing some jitter)

• analyze for the point o how well it fits to this subspace
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Subspace Outlier

• subspace spanned a set of 
points S: orthogonal to a 
subspace minimizing the 
variance but maximizing the 
number of attributes - a 
hyperplane more or less 
accommodating the set S of 
reference points

• within this subspace, the 
variance of the points in S is 
high

• in the perpendicular space, 
the variance is low
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Subspace Outlier

• variance VARS: averaged 
square distance of the 
points in S to the mean μS:

• variance along attribute i:
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Subspace Outlier

• derive the subspace: subspace defining vector specifies the 
relevant attributes of the subspace defined by a reference 
set, i.e., the attributes where the reference points exhibit low
variance

• in all d attributes, the points have a total variance of VARS

• the expected variance along attribute i is VARS / d
• variance along attribute i is low if it is smaller than the 

expected variance by a predefined coefficient α:
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Subspace Outlier

• subspace hyperplane 
H(S) of reference set S is 
defined by mean value 
μS and the subspace 
defining vector vS

• points in the reference 
set R(o) of o form a line 
in three-dimensional 
space

vR(o) = (1,0,1)
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Subspace Outlier

• distance of o to the 
reference hyperplane:

• the higher this 
distance, the more 
deviates the point o
from the behavior of 
the reference set, the 
more likely it is an 
outlier
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Subspace Outlier

subspace outlier degree 
(SOD) of a point p:

i.e., the distance 
normalized by the 
number of contributing 
attributes

possible normalization to a 
probability-value [0,1] in 
relation to the distribution of 
distances of all points in S
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Reference Set for Outliers

• recall “curse of dimensionality”
– local feature relevance need for a local reference set
– distances loose expressiveness how to choose a meaningful local 

reference set?

• consider l nearest neighbors in terms of the shared nearest 
neighbor similarity
– given a primary distance function dist (e.g. Euclidean distance)
– Nk(p): k-nearest neighbors in terms of dist
– SNN similarity for two points p and q:

– reference set R(p): l-nearest neighbors of p using simSNN

• observations back the assumption that SNN stabilizes 
neighborhood in high dimensional data

)()(),( qNpNqpsim kkSNN ∩=
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Comparison to Existing Approaches

complexity:
• determine set of k-nearest neighbors for each of n points: 

O(dn2)
• determine reference set for each point

(l-nearest neighbors based on simSNN):
O(kn)

• overall (since k<<n):
O(dn2)

comparable to most existing outlier detection algorithms
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Comparison to Existing Approaches

• 2-d sample data:

LOF

ABOD

SOD
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Comparison to Existing Approaches

• Gaussian distribution in 3 dimensions, 20 outliers
• adding 7, 17, 27, 47, 67, 97 irrelevant attributes
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Conclusion

• SOD is a new approach to model outliers in high 
dimensional data.

• SOD explores outliers in subspaces of the original feature 
space by combining the tasks of outlier detection and finding 
the relevant subspace.

• SOD is relatively stable with increasing dimensionality by 
determining the set of locally relevant neighbors based on 
SNN.

• SOD finds interesting and meaningful outliers in high 
dimensional data based on a different intuition compared to 
full-dimensional outlier models — without adding 
computational costs.


