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Correlation Clustering and Beyond What are Correlation Clusters?

Correlation Clusters

hyperplanes exhibiting a high density of data points

strong correlations between different features

corresponding linear dependencies
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Correlation Clustering and Beyond What are Correlation Clusters?

Example: Metabolic Pathways

A

a1 a2

B

There are certain pathways for degradation of metabolites.

Concentrations of input and output metabolites may be correlated,
the concentration of alternative intermediate states may vary
depending on the environment.

Genetic disorders may lead to failure of some pathways, other
pathways are used more intensely.

The concentrations of more metabolites are correlated if samples
suffer from certain diseases.
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Correlation Clustering and Beyond Why are Correlation Clusters Interesting?

Correlation Clustering

clustering: find sets of points building a hyperplane of arbitrary
dimensionality
e.g. metabolic pathways: Which patients are suffering from a disease?

post-clustering: what are the underlying linear dependencies?
e.g. metabolic pathways: What is the nature of the disease?
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(
A −B = c1

a1 −3 · B = c2

)
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Correlation Clustering and Beyond What are Models for?

Correlation Cluster Model

A model can describe a cluster.

A model can possibly be interpreted by domain experts, leading to
new insights.

A model can possibly be used to predict the class of a new point.
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Deriving Quantitative Models for Correlation Clusters Formal Description of Correlation Clusters

Formal Description of Correlation Clusters

decompose covariance matrix of correlation cluster C to
eigenvalues and eigenvectors:

ΣC = VC · EC · V T
C

most of the variance covered by small number of eigenvectors

number of eigenvectors covering most of the variance is called
correlation dimensionality λC of cluster C
eigenvectors #1, . . . ,#λC : strong eigenvectors V̌C
eigenvectors #λC + 1, . . . ,#d : weak eigenvectors V̂C
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Deriving Quantitative Models for Correlation Clusters Formal Description of Correlation Clusters

Strong and Weak Eigenvectors

Strong eigenvectors span the hyperplane corresponding to a
correlation cluster.

Weak eigenvectors are orthogonal to the hyperplane.
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Deriving Quantitative Models for Correlation Clusters Formal Description of Correlation Clusters

Eigenvectors Define a Correlation Cluster

x
y

z

�

x̄C

v1
Cv2

C

C hyperplane of a correlation cluster C
as affine subspace:

strong eigenvectors V̌C as basis
an affinity w.r.t. original data space
(e.g. centroid x̄C of the cluster C)

x = x̄C + a1v1
C + . . . + aλvλ

C , ai ∈ R

equivalent: definition by weak
eigenvectors V̂C and affinity x̄C
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Deriving Quantitative Models for Correlation Clusters Quantitative Models for Correlation Clusters

Quantitative Models

equation system to describe the hyperplane of correlation cluster
C based on weak eigenvectors V̂C and affinity x̄C :

V̂ T
C · x = V̂ T

C · x̄C .

equivalently:

v(λ+1),1(x1−x̄1) + v(λ+1),2(x2−x̄2) + ··· + v(λ+1),d(xd−x̄d ) = 0

v(λ+2),1(x1−x̄1) + v(λ+2),2(x2−x̄2) + ··· + v(λ+2),d(xd−x̄d ) = 0
...

vd,1(x1−x̄1) + vd,2(x2−x̄2) + ··· + vd,d (xd−x̄d ) = 0

defect of V̂ T
C : number of free attributes
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Deriving Quantitative Models for Correlation Clusters Quantitative Models for Correlation Clusters

Algorithm

1 run an arbitrary correlation clustering algorithm (e.g. 4C,
ORCLUS) on data set D ⊂ R

d

2 for each correlation cluster Ci ⊂ D found in the first step:
1 derive covariance matrix ΣCi

2 select weak eigenvectors V̂Ci of ΣCi

3 derive equation system describing the correlation hyperplane:

V̂ T
Ci
· x = V̂ T

Ci
· x̄Ci

4 apply Gauss-Jordan elimination to the derived equation system to
obtain a unique description of quantitative dependencies by means
of the reduced row echelon form
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Deriving Quantitative Models for Correlation Clusters Interpretation of Correlation Cluster Models

What a Correlation Cluster Model Tells Us

Example Model:⎛
⎝ 1x1 + 0x2 + c1x3 + 0x4 + e1x5 = f1

0x1 + 1x2 + c2x3 + 0x4 + e2x5 = f2
0x1 + 0x2 + 0x3 + 1x4 + e3x5 = f3

⎞
⎠

correlation dimensionality: 2 (number of free attributes, number of
strong eigenvectors)

linear dependencies by given factors c1, e1, c2, e2, and e3 among:
{x1, x3, and x5} {x2, x3, and x5} {x4 and x5}

Result:
quantitatively and uniquely defined relations between certain attributes
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Deriving Quantitative Models for Correlation Clusters Interpretation of Correlation Cluster Models

What a Correlation Cluster Model Does Not Tell Us...

What a Correlation Cluster Model
Does Not Tell Us...
Trivially, correlations do not allow to
directly conclude causalities.

... and how we can make use of it
anyway
BUT: domain experts could make use of
the model to refine experiments.
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Deriving Quantitative Models for Correlation Clusters Quantitative Models as Predictive Models

Quantitative Models as Predictive Models

Refine descriptive model by determining the average distance of
cluster members from correlation hyperplane.

The standard deviation σ of the distances of all cluster members
defines a Gaussian model of deviations from the common
correlation hyperplane.

for each model: probability for a new data point to be generated by
this specific Gaussian distribution

set of models: convenient instrument for classification in the
perspective of different linear dependencies

P(Cj |x) =

1
σj
√

2π
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Deriving Quantitative Models for Correlation Clusters Quantitative Models as Predictive Models

A New Type of Classifier

Decision models of different types of classifiers

Linear
decision

boundaries

Axis parallel
decision rules

Density
functions

Deviations
from

hyperplanes
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Evaluation Identifying Models

Synthetic Data

Dataset with increasing standard deviation
Created with dependency: x1 − 0.5x2 − 0.5x3 = 0

σ = 0 (no jitter)
x1 − 0.5000x2 − 0.5000x3 = 0.0000
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Evaluation Identifying Models

Synthetic Data

Dataset with increasing standard deviation
Created with dependency: x1 − 0.5x2 − 0.5x3 = 0

σ = 0.0173 (jitter of 1% of maximum distance in unit cube)
x1 − 0.4989x2 − 0.5002x3 = 0.0000
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Evaluation Identifying Models

Synthetic Data

Dataset with increasing standard deviation
Created with dependency: x1 − 0.5x2 − 0.5x3 = 0

σ = 0.0346 (jitter of 2% of maximum distance in unit cube)
x1 − 0.5017x2 − 0.4951x3 = 0.0016
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Evaluation Identifying Models

Synthetic Data

Dataset with increasing standard deviation
Created with dependency: x1 − 0.5x2 − 0.5x3 = 0

σ = 0.0520 (jitter of 3% of maximum distance in unit cube)
x1 − 0.5030x2 − 0.5047x3 = −0.0059
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Evaluation Identifying Models

Synthetic Data

Dataset with increasing standard deviation
Created with dependency: x1 − 0.5x2 − 0.5x3 = 0

σ = 0.0693 (jitter of 4% of maximum distance in unit cube)
x1 − 0.4962x2 − 0.5106x3 = −0.0040
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Evaluation Identifying Models

Synthetic Data

Dataset with increasing standard deviation
Created with dependency: x1 − 0.5x2 − 0.5x3 = 0

σ = 0.0866 (jitter of 5% of maximum distance in unit cube)
x1 − 0.4980x2 − 0.4956x3 = 0.0064
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Evaluation Identifying Models

Models for Real World Data

Wages data
Dependencies among age (A), years of education (YE), years of work
experience (YW), and wage (W) found for three clusters in the 1985
Current Population Survey:

1 YE = 12
YW − 1 · A = −18
W − 0.07 · A = 5.14

2 YE = 16
YW − 1 · A = −22

3 YE + 1 · YW − 1 · A = −6
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Evaluation Predictive Models

Predictive Models
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Conclusions

Conclusions

So far, correlation cluster analysis yields sets of points connected
by common correlations.

Based on such approaches, we propose to derive a model to
grasp the underlying possible causalities.

Our model is interpretable for domain experts and may help them
to refine their experimental setting (descriptive model).

Our model may also be used to classify new data points
(predictive model).
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