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What are Correlation Clusters? Appearance of Correlation Clusters

Correlation Clusters

Strong correlations between different features may correspond to
approximate linear dependencies.

They appear in the data space as hyperplanes exhibiting a high
density of data points.
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What are Correlation Clusters? Description of Correlation Clusters

Covering Correlation Clusters

derive the local covariance matrix ΣP for the k-nearest neighbors
of a point P

decomposition of ΣP to Eigenvalues and Eigenvectors

most of the variance covered by small number of Eigenvectors

number of Eigenvectors covering most of the variance is called
local correlation dimensionality of a point P: λP

Eigenvectors #1 . . . #λP : strong Eigenvectors

Eigenvectors #λP + 1 . . . #d : weak Eigenvectors
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What are Correlation Clusters? Description of Correlation Clusters

Strong and Weak Eigenvectors

Strong Eigenvectors span the hyperplane corresponding to a
correlation cluster.
Weak Eigenvectors are orthogonal to the hyperplane.
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Hierarchical Approach to Correlation Clustering Hierarchical Clustering

General Strategy for Hierarchical Clustering
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keep two separate sets of points
points already placed in cluster structure
points not yet placed in cluster structure

each step: select one point of the latter set and place it in the first
set

selection: minimize the distance to any of the points in the first set
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Hierarchical Approach to Correlation Clustering Hierarchical Correlation Clustering

Hierarchical Correlation Clusters

hierarchies of clusters: clusters nested into each other
e.g. correlation hierarchy: lines nested into planes etc.
general idea: special distance measure
correlation distance

many attributes highly correlated → small value
only few attributes highly correlated → high value

strategy: merge points with small correlation distances into
common clusters
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Hierarchical Approach to Correlation Clustering Hierarchical Correlation Clustering

Adaptation for Hierarchical Correlation Clustering
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If the strong Eigenvectors of two points together form a line (plane,
etc.), they get assigned a correlation distance of 1 (2, etc.).

The distance measure between two points corresponds to the
dimensionality of the space spanned by the strong Eigenvectors of
the two points.

weaken the algebraic sense of spanning a space to account for
slight deviations of a hyperplane
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Hierarchical Approach to Correlation Clustering Hierarchical Correlation Clustering

“Spanning a Space”

let a vector q add a new dimension to the space spanned by
{p1, . . . , pn} if the “difference” between q and this space is
substantial, i.e. if it exceeds the threshold parameter Δ

“difference”: deviation along weak Eigenvectors

build local correlation similarity matrix M̂ from weak Eigenvectors

q1

2

q2

p1
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Hierarchical Approach to Correlation Clustering Hierarchical Correlation Clustering

Test for “Linear Independency”

Test q1 for linear independency (in our relaxed sense) to all the
strong Eigenvectors pi of P:

qT
1 · M̂P · q1 > Δ2

q1

2

q2

p1

If so, q1 opens up a new dimension compared to P. The
correlation dimensionality λ(Q, P) is at least λP + 1.

Test a second vector q2:
Is q2 “linearly independent” from strong Eigenvectors of P

⋃
q1?

. . .
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Hierarchical Approach to Correlation Clustering Hierarchical Correlation Clustering

Formalization of the Correlation Distance

Definition
The correlation distance between two points P, Q∈D, denoted by
CDIST(P,Q), is a pair consisting of the correlation dimensionality of P
and Q and the Euclidean distance between P and Q, i.e.

CDIST(P, Q) = (λ(P, Q), dist(P, Q)).

We say CDIST(P, Q) ≤ CDIST(R, S) if one of the following conditions
holds:

1 λ(P, Q) < λ(R, S),
2 λ(P, Q) = λ(R, S)

∧
dist(P, Q) ≤ dist(R, S).

Achtert, Böhm, Kröger, Zimek (LMU) Mining Hierarchies of Correlation Clusters SSDBM 2006 11 / 17



Hierarchical Approach to Correlation Clustering Hierarchical Correlation Clustering

Hierarchical Correlation Clustering

Given the correlation distance measure, any hierarchical
clustering algorithm based on distance comparisons could be
employed to seek for correlation cluster hierarchies.

We used the algorithmic schema of OPTICS.

Our approach: HiCO (Hierarchical Correlation Ordering)

Like OPTICS, HiCO visualizes the cluster hierarchy in a
cluster-order as a plot of the so called reachability distances.
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Hierarchical Approach to Correlation Clustering Hierarchical Correlation Clustering

Algorithmic Schema and Result Representation

select a not yet
processed object o

add o to CO and
determine neighbors(o)

determine reachability 
distance of each neighbor

remove first object o
from the seed list

seed list empty

seed list 
not empty

insert or update the 
neighbors in the seed list
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Evaluation Synthetic Data

Synthetic Data Set
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Evaluation Synthetic Data

HiCO - Cluster Order

Cluster 1 Cluster 2

Cluster 3
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Evaluation Synthetic Data

HiCO - Cluster Order

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3
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Evaluation Real World Data

Exemplary Results: Metabolome Data

PKU
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Conclusions

Conclusions

“Correlation Clusters” are clusters of points exhibiting possible
linear dependencies among several features.

The hierarchical clustering approach enables us to find clusters in
different ranges simultaneously.

We introduced a correlation distance measure to account for
different ranges of correlation dimensionality.
In contrast to existing work, HiCO does not require the user to
specify

any global density threshold,
the number of clusters to be found,
nor any parameter specifying the dimensionality of the clusters.

Results show HiCO finding meaningful correlation clusters of
lower dimensionality embedded in correlation clusters of higher
dimensionality, superior to other approaches.
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Appendix Limitations of Other Approaches

Other Approaches

Subspace (Projected) Clustering: finds axis parallel projections
only

Pattern-Based Clustering (aka. Co-Clustering or Bi-Clustering):
limited to pairwise positive correlations

Correlation Clustering:
ORCLUS: integrates PCA into k-means — user needs to

specify number of clusters in advance
4C: integrates PCA into DBSCAN — user needs to

specify global density threshold
Both tend to find clusters of a dimensionality close to a user
specified value, instead of uncovering all correlation clusters
hidden in the data set.
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Appendix Results of Other Methods

ORCLUS

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3
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Appendix Results of Other Methods

OPTICS

Cluster 1

Cluster 2

(a) Reachability Plot (b) Cluster 1 (c) Cluster 2
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Appendix Results of Other Methods

4C

Cluster 3

Cluster 2

Cluster 1

Cluster 4

(a) λ = 1

Cluster 1

(b) λ = 2
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Appendix Formal Definition of the Local Covariance Matrix

Local Covariance Matrix

Definition
Let k ∈N, k ≤|D|. The local covariance matrix ΣP of a point P∈D w.r.t.
k is formed by the k nearest neighbors of P.
Let X be the centroid of NN k (P), then

ΣP =
1

|NNk (P)| ·
∑

X∈NNk (P)

(X − X ) · (X − X )T

Since the local covariance matrix ΣP of a point P is a square matrix it
can be decomposed into the Eigenvalue matrix EP of P and the
Eigenvector matrix VP of P such that ΣP = VP · EP · V T

P .
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Appendix Formal Definition of the Local Correlation Similarity Matrix

Local Correlation Similarity Matrix

Definition
Let point P ∈ D, VP the corresponding d × d Eigenvector matrix of the
local covariance matrix ΣP of P, and λP the local correlation
dimensionality of P. The matrix ÊP with entries êi (i = 1, . . . , d) is
computed according to the following rule:

êi =

{
0, if i ≤ λP

1, otherwise

The matrix
M̂P = VPÊPV T

P

is called the local correlation similarity matrix of P.
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Appendix Local Correlation Distance

Local Correlation Distance

The local correlation similarity matrix is suitable to define a quadratic
form distance measure w.r.t. a point:

Definition
The local correlation distance of point P to point Q according to the
local correlation similarity matrix M̂P associated with point P is denoted
by

LOCDISTP(P, Q) =

√
(P − Q)T · M̂P · (P − Q).
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Appendix Local Correlation Distance

Effect of the Local Correlation Distance

Weights distances along the strong Eigenvectors by 0.

Weights distances along the weak Eigenvectors by 1.

Only distances orthogonal to the cluster hyperplane are relevant.
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Appendix Real-World-Meaning of Correlation Clusters

Example: Metabolic Pathways

A

a1 a2

B

There are certain pathways for degradation of metabolics.

Concentrations of input and output metabolites may be correlated,
the concentration of alternative intermediate states may vary
depending on the environment.

Genetic disorders may lead to failure of some pathways, other
pathways are used more intensely.

The concentrations of more metabolites are correlated if samples
suffer from certain diseases.
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Appendix Linear Independency for a Set of Vectors

Correlation Dimensionality

The correlation dimensionality between two points P, Q ∈ D, denoted
by λ(P, Q), is the dimensionality of the space which is spanned by the
union of the strong Eigenvectors associated to P and the strong
Eigenvectors associated to Q.

Q

P

p2

p1

q1

q2

All four vectors are pairwise linearly independent. But the union of all
four is spanning a space of dimensionality 3.
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Appendix Considerations for the Correlation Distance

Considerations for the Correlation Distance

The dimensionality of the spaces spanned by unifying the strong
Eigenvectors of P with the set of strong Eigenvectors of Q or vice
versa can differ from each other, i.e. λP(P, Q) and λQ(P, Q) may
differ.

As a symmetric distance measure we build the maximum:

λ(P, Q) = max (λP(P, Q), λQ(P, Q))

As λ(P, Q) ∈ N, many distances between different point pairs are
identical. → Resolve tie situations by additionally considering the
Euclidean distance.

As a consequence, inside a correlation cluster the points are
clustered as by a conventional hierarchical clustering method.
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