# Mining Hierarchies of Correlation Clusters

#### Elke Achtert Christian Böhm Peer Kröger Arthur Zimek

Institute for Computer Science Ludwig-Maximilians-Universität München

10th International Conference on Scientific and Statistical Database Management, Vienna, Austria, 2006



# Overview

#### 1

#### What are Correlation Clusters?

- Appearance of Correlation Clusters
- Description of Correlation Clusters

#### Hierarchical Approach to Correlation Clustering

- Hierarchical Clustering
- Hierarchical Correlation Clustering

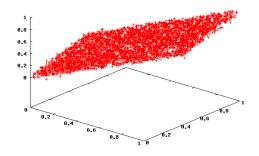
# 3 Evaluation

- Synthetic Data
- Real World Data

# Conclusions

## **Correlation Clusters**

- Strong correlations between different features may correspond to approximate linear dependencies.
- They appear in the data space as hyperplanes exhibiting a high density of data points.



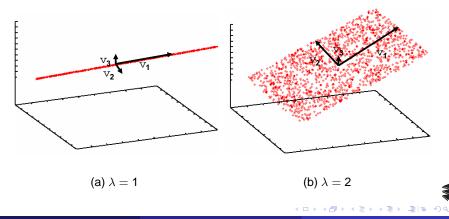
# **Covering Correlation Clusters**

- derive the local covariance matrix Σ<sub>P</sub> for the k-nearest neighbors of a point P
- decomposition of Σ<sub>P</sub> to Eigenvalues and Eigenvectors
- most of the variance covered by small number of Eigenvectors
- number of Eigenvectors covering most of the variance is called local correlation dimensionality of a point P: λ<sub>P</sub>
- Eigenvectors  $\#1 \dots \#\lambda_P$ : strong Eigenvectors
- Eigenvectors  $\#\lambda_P + 1 \dots \#d$ : weak Eigenvectors



# Strong and Weak Eigenvectors

- Strong Eigenvectors span the hyperplane corresponding to a correlation cluster.
- Weak Eigenvectors are orthogonal to the hyperplane.





#### keep two separate sets of points

- points already placed in cluster structure
- points not yet placed in cluster structure
- each step: select one point of the latter set and place it in the first set
- selection: minimize the distance to any of the points in the first set

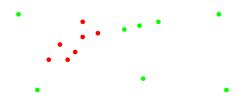




#### keep two separate sets of points

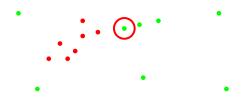
- points already placed in cluster structure
- points not yet placed in cluster structure
- each step: select one point of the latter set and place it in the first set
- selection: minimize the distance to any of the points in the first set





- keep two separate sets of points
  - points already placed in cluster structure
  - points not yet placed in cluster structure
- each step: select one point of the latter set and place it in the first set
- selection: minimize the distance to any of the points in the first set

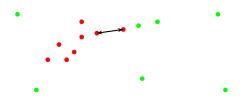




- keep two separate sets of points
  - points already placed in cluster structure
  - points not yet placed in cluster structure
- each step: select one point of the latter set and place it in the first set

selection: minimize the distance to any of the points in the first set



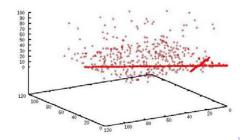


- keep two separate sets of points
  - points already placed in cluster structure
  - points not yet placed in cluster structure
- each step: select one point of the latter set and place it in the first set
- selection: minimize the distance to any of the points in the first set

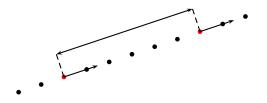


## Hierarchical Correlation Clusters

- hierarchies of clusters: clusters nested into each other
- e.g. correlation hierarchy: lines nested into planes etc.
- general idea: special distance measure correlation distance
  - many attributes highly correlated  $\rightarrow$  small value
  - only few attributes highly correlated  $\rightarrow$  high value
- strategy: merge points with small correlation distances into common clusters



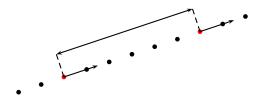
# Adaptation for Hierarchical Correlation Clustering



- If the strong Eigenvectors of two points together form a line (plane, etc.), they get assigned a correlation distance of 1 (2, etc.).
- The distance measure between two points corresponds to the dimensionality of the space spanned by the strong Eigenvectors of the two points.
- weaken the algebraic sense of spanning a space to account for slight deviations of a hyperplane



# Adaptation for Hierarchical Correlation Clustering



- If the strong Eigenvectors of two points together form a line (plane, etc.), they get assigned a correlation distance of 1 (2, etc.).
- The distance measure between two points corresponds to the dimensionality of the space spanned by the strong Eigenvectors of the two points.
- weaken the algebraic sense of spanning a space to account for slight deviations of a hyperplane



# Adaptation for Hierarchical Correlation Clustering

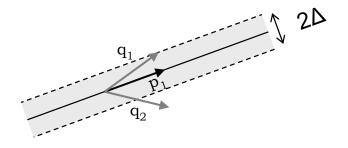


- If the strong Eigenvectors of two points together form a line (plane, etc.), they get assigned a correlation distance of 1 (2, etc.).
- The distance measure between two points corresponds to the dimensionality of the space spanned by the strong Eigenvectors of the two points.
- weaken the algebraic sense of spanning a space to account for slight deviations of a hyperplane



# "Spanning a Space"

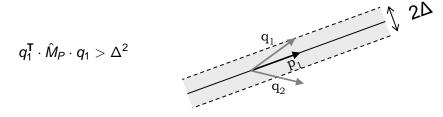
- let a vector *q* add a new dimension to the space spanned by {*p*<sub>1</sub>,...,*p<sub>n</sub>*} if the "difference" between *q* and this space is substantial, i.e. if it exceeds the threshold parameter Δ
- "difference": deviation along weak Eigenvectors
- build local correlation similarity matrix  $\hat{M}$  from weak Eigenvectors





## Test for "Linear Independency"

 Test q<sub>1</sub> for linear independency (in our relaxed sense) to all the strong Eigenvectors p<sub>i</sub> of P:



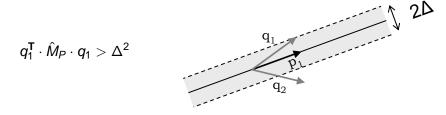
If so, q<sub>1</sub> opens up a new dimension compared to P. The correlation dimensionality λ(Q, P) is at least λ<sub>P</sub> + 1.

 Test a second vector q<sub>2</sub>: Is q<sub>2</sub> "linearly independent" from strong Eigenvectors of P ∪ q<sub>1</sub>?



## Test for "Linear Independency"

 Test q<sub>1</sub> for linear independency (in our relaxed sense) to all the strong Eigenvectors p<sub>i</sub> of P:



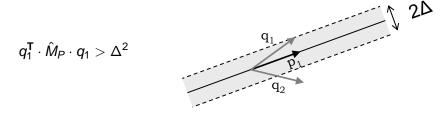
If so, q<sub>1</sub> opens up a new dimension compared to P. The correlation dimensionality λ(Q, P) is at least λ<sub>P</sub> + 1.

 Test a second vector *q*<sub>2</sub>: Is *q*<sub>2</sub> "linearly independent" from strong Eigenvectors of *P* ∪ *q*<sub>1</sub>?



## Test for "Linear Independency"

 Test q<sub>1</sub> for linear independency (in our relaxed sense) to all the strong Eigenvectors p<sub>i</sub> of P:



- If so, q<sub>1</sub> opens up a new dimension compared to P. The correlation dimensionality λ(Q, P) is at least λ<sub>P</sub> + 1.
- Test a second vector q<sub>2</sub>: Is q<sub>2</sub> "linearly independent" from strong Eigenvectors of P ∪ q<sub>1</sub>?



. . .

# Formalization of the Correlation Distance

#### Definition

The correlation distance between two points  $P, Q \in D$ , denoted by CDIST(P, Q), is a pair consisting of the correlation dimensionality of P and Q and the Euclidean distance between P and Q, i.e.

$$\mathsf{CDIST}(P, Q) = (\lambda(P, Q), \mathit{dist}(P, Q)).$$

We say  $CDIST(P, Q) \leq CDIST(R, S)$  if one of the following conditions holds:

$$\lambda(P, Q) < \lambda(R, S)$$

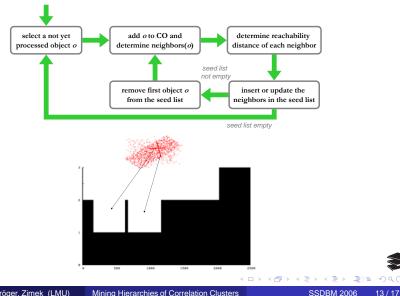
2 
$$\lambda(P, Q) = \lambda(R, S) \wedge dist(P, Q) \leq dist(R, S).$$

# **Hierarchical Correlation Clustering**

- Given the correlation distance measure, any hierarchical clustering algorithm based on distance comparisons could be employed to seek for correlation cluster hierarchies.
- We used the algorithmic schema of OPTICS.
- Our approach: HiCO (Hierarchical Correlation Ordering)
- Like OPTICS, HiCO visualizes the cluster hierarchy in a cluster-order as a plot of the so called reachability distances.



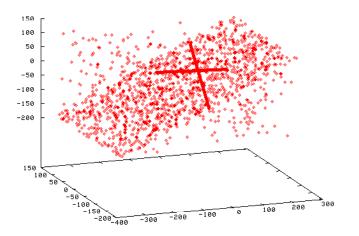
## Algorithmic Schema and Result Representation



Achtert, Böhm, Kröger, Zimek (LMU)

Mining Hierarchies of Correlation Clusters

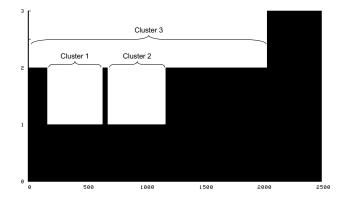
## Synthetic Data Set



ъ

◆重→

# HiCO - Cluster Order

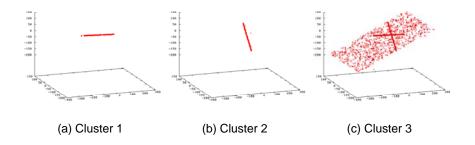




SSDBM 2006 15 / 17

▲□> ▲圖> ▲필> ▲필> - 필]님

### HiCO - Cluster Order





12

▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ 二三

Evaluation Real

#### Real World Data

# Exemplary Results: Metabolome Data





# Conclusions

- "Correlation Clusters" are clusters of points exhibiting possible linear dependencies among several features.
- The hierarchical clustering approach enables us to find clusters in different ranges simultaneously.
- We introduced a correlation distance measure to account for different ranges of correlation dimensionality.
- In contrast to existing work, HiCO does not require the user to specify
  - any global density threshold,
  - the number of clusters to be found,
  - nor any parameter specifying the dimensionality of the clusters.
- Results show HiCO finding meaningful correlation clusters of lower dimensionality embedded in correlation clusters of higher dimensionality, superior to other approaches.



# **Other Approaches**

- Subspace (Projected) Clustering: finds axis parallel projections only
- Pattern-Based Clustering (aka. Co-Clustering or Bi-Clustering): limited to pairwise positive correlations
- Correlation Clustering:

ORCLUS: integrates PCA into *k*-means — user needs to specify number of clusters in advance

4C: integrates PCA into DBSCAN — user needs to specify global density threshold

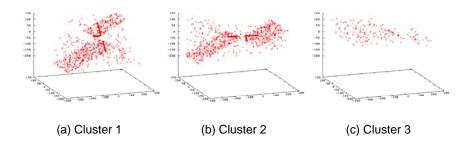
Both tend to find clusters of a dimensionality close to a user specified value, instead of uncovering all correlation clusters hidden in the data set.



▲◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ●

Appendix Results of Other Methods

# ORCLUS





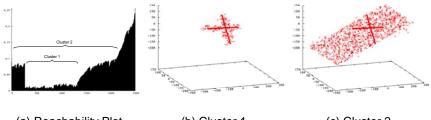
19/17

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**SSDBM 2006** 

Appendix Results of Other Methods

## **OPTICS**



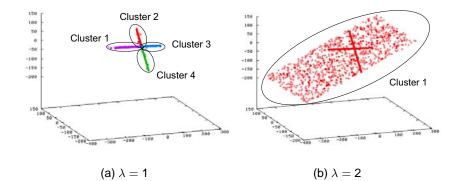
(a) Reachability Plot

(b) Cluster 1

(c) Cluster 2

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・







SSDBM 2006 21 / 17

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

# Local Covariance Matrix

#### Definition

Let  $k \in \mathbb{N}$ ,  $k \leq |\mathcal{D}|$ . The local covariance matrix  $\Sigma_P$  of a point  $P \in \mathcal{D}$  w.r.t. k is formed by the k nearest neighbors of P. Let  $\overline{X}$  be the centroid of  $NN_k(P)$ , then

$$\Sigma_P = rac{1}{|NN_k(P)|} \cdot \sum_{X \in NN_k(P)} (X - \overline{X}) \cdot (X - \overline{X})^\mathsf{T}$$

Since the local covariance matrix  $\Sigma_P$  of a point *P* is a square matrix it can be decomposed into the Eigenvalue matrix  $E_P$  of *P* and the Eigenvector matrix  $V_P$  of *P* such that  $\Sigma_P = V_P \cdot E_P \cdot V_P^T$ .



(四) (日) (日) (日)

# Local Correlation Similarity Matrix

#### Definition

Let point  $P \in D$ ,  $V_P$  the corresponding  $d \times d$  Eigenvector matrix of the local covariance matrix  $\Sigma_P$  of P, and  $\lambda_P$  the local correlation dimensionality of P. The matrix  $\hat{E}_P$  with entries  $\hat{e}_i$  (i = 1, ..., d) is computed according to the following rule:

$$\hat{\mathsf{e}}_i = \left\{ egin{array}{cc} \mathsf{0}, \, ext{if} & i \leq \lambda_P \ \mathsf{1}, \, \mathsf{otherwise} \end{array} 
ight.$$

The matrix

$$\hat{M}_P = V_P \hat{E}_P V_P^{\mathsf{T}}$$

is called the local correlation similarity matrix of P.

# Local Correlation Distance

The local correlation similarity matrix is suitable to define a quadratic form distance measure w.r.t. a point:

#### Definition

The local correlation distance of point *P* to point *Q* according to the local correlation similarity matrix  $\hat{M}_P$  associated with point *P* is denoted by

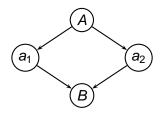
$$\mathsf{LocDist}_{\mathrm{P}}(\mathsf{P},\mathsf{Q}) = \sqrt{(\mathsf{P}-\mathsf{Q})^{\mathsf{T}} \cdot \hat{M}_{\mathsf{P}} \cdot (\mathsf{P}-\mathsf{Q})}.$$



# Effect of the Local Correlation Distance

- Weights distances along the strong Eigenvectors by 0.
- Weights distances along the weak Eigenvectors by 1.
- Only distances orthogonal to the cluster hyperplane are relevant.

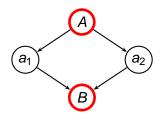




#### • There are certain pathways for degradation of metabolics.

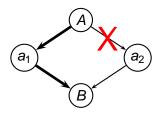
- Concentrations of input and output metabolites may be correlated, the concentration of alternative intermediate states may vary depending on the environment.
- Genetic disorders may lead to failure of some pathways, other pathways are used more intensely.
- The concentrations of more metabolites are correlated if samples suffer from certain diseases.



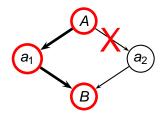


- There are certain pathways for degradation of metabolics.
- Concentrations of input and output metabolites may be correlated, the concentration of alternative intermediate states may vary depending on the environment.
- Genetic disorders may lead to failure of some pathways, other pathways are used more intensely.
- The concentrations of more metabolites are correlated if samples suffer from certain diseases.





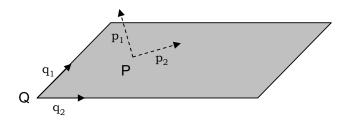
- There are certain pathways for degradation of metabolics.
- Concentrations of input and output metabolites may be correlated, the concentration of alternative intermediate states may vary depending on the environment.
- Genetic disorders may lead to failure of some pathways, other pathways are used more intensely.
- The concentrations of more metabolites are correlated if samples suffer from certain diseases.



- There are certain pathways for degradation of metabolics.
- Concentrations of input and output metabolites may be correlated, the concentration of alternative intermediate states may vary depending on the environment.
- Genetic disorders may lead to failure of some pathways, other pathways are used more intensely.
- The concentrations of more metabolites are correlated if samples suffer from certain diseases.

# **Correlation Dimensionality**

The correlation dimensionality between two points  $P, Q \in D$ , denoted by  $\lambda(P, Q)$ , is the dimensionality of the space which is spanned by the union of the strong Eigenvectors associated to P and the strong Eigenvectors associated to Q.



All four vectors are pairwise linearly independent. But the union of all four is spanning a space of dimensionality 3.



# Considerations for the Correlation Distance

- The dimensionality of the spaces spanned by unifying the strong Eigenvectors of *P* with the set of strong Eigenvectors of *Q* or vice versa can differ from each other, i.e. λ<sub>P</sub>(P, Q) and λ<sub>Q</sub>(P, Q) may differ.
- As a symmetric distance measure we build the maximum:

$$\lambda(P,Q) = \max\left(\lambda_P(P,Q), \lambda_Q(P,Q)\right)$$

- As λ(P, Q) ∈ N, many distances between different point pairs are identical. → Resolve tie situations by additionally considering the Euclidean distance.
- As a consequence, inside a correlation cluster the points are clustered as by a conventional hierarchical clustering method.

