The maximum of the periodogram of a sequence of functional data

Vaidotas Characiejus ${ }^{\text {a }}$
Joint work with Clément Ceroveckib ${ }^{\text {b }}$ and Siegfried Hörmann ${ }^{\text {c }}$

COMPSTAT 2022 / Bologna, August 23, 2022
${ }^{\text {a }}$ Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
${ }^{\text {b }}$ Département de mathématique, Université libre de Bruxelles, Belgium
${ }^{\text {b }}$ Department of Mathematics, Katholieke Universiteit Leuven, Belgium
${ }^{\text {C Institute of Statistics, Graz University of Technology, Austria }}$

Outline

Motivation and problem

Main results

Empirical study

Summary

Motivation and problem

PM10 data

- Air quality data from Graz, Austria.
- The amount of particulate matter with a diameter of $10 \mu \mathrm{~m}$ or less (PM10) is measured.
- PM10 can settle in the bronchi and lungs and cause health problems.
- Starting on February 18, 2010, the amount of PM10 in $\mu \mathrm{g} / \mathrm{m}^{3}$ is recorded every 30 minutes resulting in 48 observations per day.

Raw data

Weekly mean curve

Weekly averages

Weekly averages

The PM10 data as a sequence of curves

We investigate the PM10 data as a functional time series, i.e. as a sequence of daily curves.

Model

$\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a time series with values in a real separable Hilbert space \mathbb{H} defined by

$$
X_{t}=\mu+s_{t}+Y_{t}
$$

for each $t \in \mathbb{Z}$, where

- $\mu \in \mathbb{H} ;$
- $\left\{s_{t}\right\}_{t \in \mathbb{Z}} \subset \mathbb{H}$ is a deterministic sequence such that

$$
S_{t}=S_{t+T} \quad \text { and } \quad \sum_{t=1}^{T} s_{t}=0
$$

for all $t \in \mathbb{Z}$ with some $T \geq 2$;

- $\left\{Y_{t}\right\}_{t \in \mathbb{Z}}$ is a stationary sequence of zero mean random elements with values in \mathbb{H}.

Hypothesis testing

We develop a methodology to test

$$
H_{0}: X_{t}=\mu+Y_{t} \quad \text { versus } \quad H_{1}: X_{t}=\mu+S_{t}+Y_{t}
$$

with an unknown $T \geq 2$.

Main results

Frequency domain approach

Our methodology is based on the frequency domain approach to the analysis of functional time series.

DFT

Definition

The discrete Fourier transform (DFT) of X_{1}, \ldots, X_{n} is defined by

$$
\mathcal{X}_{n}\left(\omega_{j}\right)=n^{-1 / 2} \sum_{t=1}^{n} x_{t} e^{-i t \omega_{j}}
$$

for $n \geq 1$, where $\omega_{j}=2 \pi j / n$ with $j=-\lfloor(n-1) / 2\rfloor, \ldots,\lfloor n / 2\rfloor$ and $i=\sqrt{-1}$.

Maximum of periodogram

The test statistic is given by

$$
\max _{1 \leq j \leq q}\left\|\mathcal{X}_{n}\left(\omega_{j}\right)\right\|^{2}
$$

for $n>1$, where
i) $\omega_{j}=2 \pi j / n$ with $1 \leq j \leq q=\lfloor n / 2\rfloor$;
ii) $\|\cdot\|$ is the norm of the complexification of \mathbb{H}.

Linear processes

Suppose that $\left\{Y_{t}\right\}_{t \in \mathbb{Z}}$ is a linear process with values in \mathbb{H} given by

$$
Y_{t}=\sum_{k=-\infty}^{\infty} a_{k}\left(\varepsilon_{t-k}\right)
$$

for each $t \in \mathbb{Z}$, where

- $\left\{a_{k}\right\}_{k \in \mathbb{Z}} \subset L(\mathbb{H}) ;$
- $\left\{\varepsilon_{t}\right\}_{t \in \mathbb{Z}}$ are iid zero mean random elements with values in \mathbb{H}.

Assumptions

Assumption 1

i) $E\left\|\varepsilon_{0}\right\|^{r}<\infty$ where $r>2$ if $\operatorname{dim} \mathbb{H}<\infty$ and $r \geq 4$ otherwise;
ii) the eigenvalues λ_{k} of $E\left[\varepsilon_{0} \otimes \varepsilon_{0}\right]$ are distinct and the sequence $\left\{k \lambda_{k}\right\}_{k \geq 1}$ is ultimately non-increasing;
iii) some technical conditions on the decay rate of $\left\{\lambda_{k}\right\}_{k \geq 1}$.

Assumption 2

i) $\sum_{k \neq 0} \log (|k|)\left\|a_{k}\right\|_{o p}<\infty$;
ii) $A^{-1}(\omega)$ exists for each $\omega \in[-\pi, \pi]$, where $A(\omega)=\sum_{k=-\infty}^{\infty} a_{k} e^{-i k \omega}$ with $\omega \in[-\pi, \pi]$;
iii) $\sup _{\omega \in[0, \pi]}\left\|A^{-1}(\omega)\right\|_{o p}<\infty$.

Main result

Theorem

Under H_{0} and Assumptions 1 and 2, we have that

$$
\lambda_{1}^{-1}\left(\max _{1 \leq j \leq q}\left\|A^{-1}\left(\omega_{j}\right) \mathcal{X}_{n}\left(\omega_{j}\right)\right\|^{2}-b_{n}\right) \xrightarrow{d} G \quad \text { as } \quad n \rightarrow \infty,
$$

where

- $A\left(\omega_{j}\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{-i k \omega_{j}}$ with $j=1, \ldots, q$;
- $b_{n}=\lambda_{1} \log q-\lambda_{1} \sum_{j=2}^{\infty} \log \left(1-\lambda_{j} / \lambda_{1}\right)$;
- G is the standard Gumbel distribution with the CDF given by $F(x)=\exp \{-\exp \{-x\}\}$ for $x \in \mathbb{R}$.

High-dimensional Gaussian approximation

The core part of the proof is a high-dimensional Gaussian approximation for the DFT developed by Chernozhukov et al. (2017).

FAR(1)

$\left\{Y_{t}\right\}_{t \in \mathbb{Z}}$ is an $\operatorname{FAR}(1)$ model given by

$$
Y_{t}=\rho\left(Y_{t-1}\right)+\varepsilon_{t}=\sum_{j=0}^{\infty} \rho^{j}\left(\varepsilon_{t-j}\right)
$$

for $t \in \mathbb{Z}$ with $\rho \in L(\mathbb{H})$.

Assumption 3

i) There is an $n_{0} \geq 1$ such that $\left\|\rho^{n_{0}}\right\|<1$;
ii) $\hat{\rho}$ is an estimator of ρ such that

$$
\|\hat{\rho}-\rho\|_{o p}=o_{p}\left(1 / \tau_{n}^{\prime}\right)
$$

as $n \rightarrow \infty$ with $\tau_{n}^{\prime} \geq \log n$.

Residuals and their eigenvalues

- $\left\{\hat{\varepsilon}_{k}\right\}_{2 \leq k \leq n}$ are the residuals given by

$$
\hat{\varepsilon}_{k}=X_{k}-\hat{\rho}\left(X_{k-1}\right)
$$

for $k=2, \ldots, n$.

- $\left\{\hat{\lambda}_{j}\right\}_{j \geq 1}$ are the eigenvalues of

$$
\frac{1}{n-1} \sum_{k=2}^{n} \hat{\varepsilon}_{k} \otimes \hat{\varepsilon}_{k} .
$$

Test statistic

Theorem

Under H_{0} and Assumptions 1 and 3,

$$
G_{n}:=\hat{\lambda}_{1}^{-1} \max _{1 \leq j \leq q}\left\|\left(I-e^{-i \omega_{j}} \hat{\rho}\right)\left(\mathcal{X}_{n}\left(\omega_{j}\right)\right)\right\|^{2}
$$

$$
-\log q+\max \left\{\sum_{j=2}^{\tau_{n}} \log \left(1-\hat{\lambda}_{j} / \hat{\lambda}_{1}\right), c_{n}\right\} \xrightarrow{d} \mathcal{G}
$$

as $n \rightarrow \infty$, where $\left\{\tau_{n}\right\}_{n \geq 1} \subset \mathbb{N}$ and $\left\{c_{n}\right\}_{n \geq 1} \subset \mathbb{R}$ are sequences that satisfy certain technical conditions.

Consistency

Theorem
Under H_{1},

$$
G_{n} / \ell_{n} \xrightarrow{p} \infty \quad \text { as } \quad n \rightarrow \infty
$$

for any positive sequence $\ell_{n}=o(n)$ as $n \rightarrow \infty$ provided certain technical conditions are satisfied.

Empirical study

PM10 time series

- We plot the points $\left(j, G_{n}(j)\right)$ with $j=1, \ldots, q=1998$ and

$$
\begin{aligned}
& G_{n}(j):=\lambda_{1}^{-1}\left\|\left(I-e^{-i \omega_{j}} \hat{\rho}\right)\left(\mathcal{X}_{n}\left(\omega_{j}\right)\right)\right\|^{2} \\
&-\log q+\max \left\{\sum_{j=2}^{\tau_{n}} \log \left(1-\hat{\lambda}_{j} / \hat{\lambda}_{1}\right), c_{n}\right\},
\end{aligned}
$$

where $n=3997$.

- Observe that

$$
G_{n}=\max _{1 \leq j \leq q} G_{n}(j) .
$$

PM10 time series

PM10 time series

75

50
${\underset{\text { ©゙ }}{-}}^{-}$

PM10 time series

Yearly periodic component

Friday

Periodic component

Friday

Periodic component

Monday

Friday

Wednesday

Sunday

Periodic component

Monday

Friday

Wednesday

Periodic component

Monday

Friday

Wednesday

Periodic component

Monday

Friday

Wednesday

Periodic component

Monday

Friday

Wednesday

Sunday

Deseasonalized data

Summary

Summary

- A general test for periodic signals in Hilbert space valued time series when the length of the period is unknown.
- The appropriately standardized maximum of the periodogram converges in distribution to the standard Gumbel distribution.
- A weekly as well as a yearly periodic components are detected in the PM10 data.
- The periodic signals in the PM10 data are not pure sinusoids but are actually driven by several sinusoids.
https://imada.sdu.dk/~characiejus/

