The maximum of the periodogram of a sequence of functional data

Vaidotas Characiejus^a

Joint work with Clément Cerovecki^b and Siegfried Hörmann^c

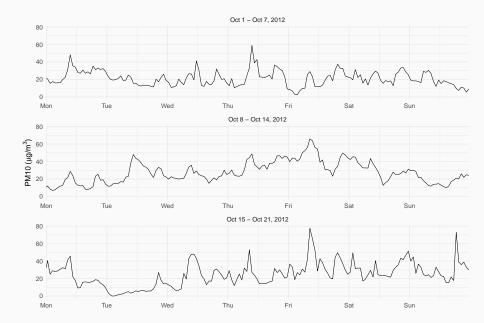
NORDSTAT 2023 / Gothenburg, Sweden, June 19, 2023

^aDepartment of Mathematics and Computer Science, University of Southern Denmark, Denmark ^bDépartement de mathématique, Université libre de Bruxelles, Belgium ^bDepartment of Mathematics, Katholieke Universiteit Leuven, Belgium ^cInstitute of Statistics, Graz University of Technology, Austria

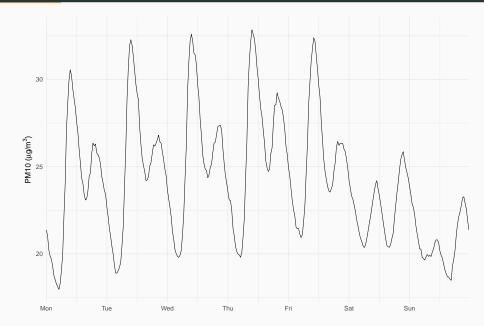
Motivation and problem

- Air quality data from Graz, Austria.
- $\cdot\,$ The amount of particulate matter with a diameter of 10 μm or less (PM10) is measured.
- PM10 can settle in the bronchi and lungs and cause health problems.
- Starting on February 18, 2010, the amount of PM10 in $\mu g/m^3$ is recorded every 30 minutes resulting in 48 observations per day.

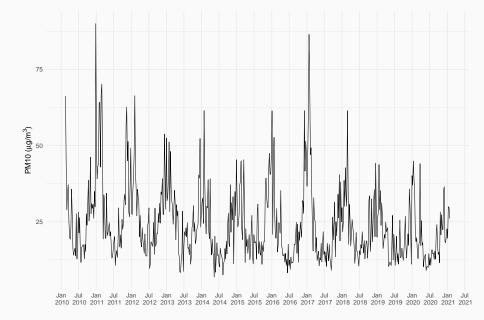
Raw data



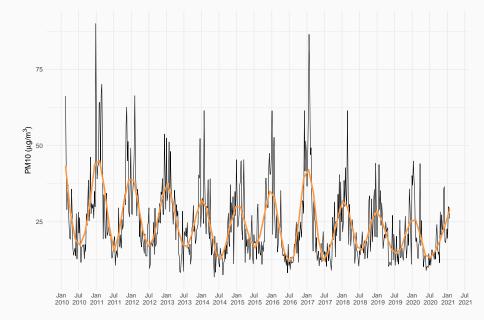
Weekly mean curve



Weekly averages



Weekly averages



Functional time series

- A functional time series is a sequence $\{X_t\}_{t \in \mathbb{Z}}$ such that each X_t is a curve $\{X_t(u)\}_{u \in [0,1]}$.
- We separate a continuous time process $\{\xi(u)\}_{u\in\mathbb{R}}$ using natural consecutive intervals, i.e.

$$X_t(u) = \xi(t+u)$$

for $u \in [0, 1]$ and $t \in \mathbb{Z}$.

- Such segmentation accounts for a periodic structure in the underlying continuous time process.
- There might still remain a periodic signal with respect to the discrete time parameter $t \in \mathbb{Z}$.

Model

 $\{X_t\}_{t\in\mathbb{Z}}$ is a time series with values in a real separable Hilbert space \mathbb{H} (e.g. $L^2[0, 1]$) defined by

$$X_t = \mu + s_t + Y_t$$

for each $t \in \mathbb{Z}$, where

- · $\mu \in \mathbb{H}$;
- + $\{s_t\}_{t\in\mathbb{Z}}\subset\mathbb{H}$ is a deterministic sequence such that

$$s_t = s_{t+T}$$
 and $\sum_{t=1}^T s_t = 0$

for all $t \in \mathbb{Z}$ with some $T \geq 2$;

• $\{Y_t\}_{t\in\mathbb{Z}}$ is a stationary sequence of zero mean random elements with values in \mathbb{H} .

We develop a methodology to test

$$H_0: X_t = \mu + Y_t$$
 versus $H_1: X_t = \mu + s_t + Y_t$

with an unknown $T \ge 2$.

Main results

Our methodology is based on the frequency domain approach to the analysis of functional time series.

Definition

The discrete Fourier transform (DFT) of X_1, \ldots, X_n is defined by

$$\mathcal{X}_n(\omega_j) = n^{-1/2} \sum_{t=1}^n X_t e^{-it\omega_j}$$

for $n \ge 1$, where

i) $\omega_j = 2\pi j/n$ with $j = -\lfloor (n-1)/2 \rfloor, \dots, \lfloor n/2 \rfloor$ are the Fourier frequencies;

ii) $i = \sqrt{-1}$.

The test statistic is given by

$$M_n = \max_{1 \le j \le q} \|\mathcal{X}_n(\omega_j)\|^2$$

for n > 2, where

i)
$$\omega_j = 2\pi j/n$$
 with $1 \le j \le q = \lfloor n/2 \rfloor$;
ii) $\|\cdot\|$ is the norm of the complexification of \mathbb{H} .

The test statistic is given by

$$M_n = \max_{1 \leq j \leq q} \|\mathcal{X}_n(\omega_j)\|^2$$

for n > 2.

- Small values of M_n indicate that there is no periodic component.
- Large values of M_n indicate that there is a periodic component.
- We need a criterion to decide when M_n is small and when M_n is large.

Suppose that $\{Y_t\}_{t\in\mathbb{Z}}$ is a linear process with values in $\mathbb H$ given by

$$Y_t = \sum_{k=-\infty}^{\infty} a_k(\varepsilon_{t-k})$$

for each $t \in \mathbb{Z}$, where

- $\{\varepsilon_t\}_{t\in\mathbb{Z}}$ are iid zero mean random elements with values in \mathbb{H} ;
- $\{a_k\}_{k\in\mathbb{Z}}\subset L(\mathbb{H}).$

Assumptions

Assumption 1

- i) $E \|\varepsilon_0\|^r < \infty$ where r > 2 if dim $\mathbb{H} < \infty$ and $r \ge 4$ otherwise;
- ii) the eigenvalues λ_k of $E[\varepsilon_0 \otimes \varepsilon_0]$ are distinct and the sequence $\{k\lambda_k\}_{k\geq 1}$ is ultimately non-increasing;
- iii) some technical conditions on the decay rate of $\{\lambda_k\}_{k\geq 1}$.

Assumption 2

- i) $\sum_{k\neq 0} \log(|k|) \|a_k\| < \infty;$
- ii) $A^{-1}(\omega)$ exists for each $\omega \in [-\pi, \pi]$, where $A(\omega) = \sum_{k=-\infty}^{\infty} a_k e^{-ik\omega}$ with $\omega \in [-\pi, \pi]$ is the transfer function;
- iii) $\sup_{\omega \in [0,\pi]} \|A^{-1}(\omega)\| < \infty.$

Main result

Theorem

Under H_0 and Assumptions 1 and 2, we have that

$$\lambda_1^{-1} \Big(\max_{1 \leq j \leq q} \|A^{-1}(\omega_j) \mathcal{X}_n(\omega_j)\|^2 - b_n \Big) \xrightarrow{d} G \text{ as } n \to \infty,$$

where

- $A(\omega_j) = \sum_{k=-\infty}^{\infty} a_k e^{-ik\omega_j}$ with $j = 1, \dots, q$;
- $b_n = \lambda_1 \log q \lambda_1 \sum_{j=2}^{\infty} \log(1 \lambda_j/\lambda_1);$
- *G* is the standard Gumbel distribution with the CDF given by $F(x) = \exp\{-\exp\{-x\}\}$ for $x \in \mathbb{R}$.

FAR(1)

 $\{Y_t\}_{t\in\mathbb{Z}}$ is an FAR(1) model given by

$$Y_t = \rho(Y_{t-1}) + \varepsilon_t = \sum_{j=0}^{\infty} \rho^j(\varepsilon_{t-j})$$

for $t \in \mathbb{Z}$ with $\rho \in L(\mathbb{H})$.

Assumption 3

i) There is an $n_0 \ge 1$ such that $\|\rho^{n_0}\| < 1$;

ii) $\hat{\rho}$ is an estimator of ρ such that

$$\|\hat{\rho} - \rho\|_{op} = o_p(1/\tau'_n)$$

as $n \to \infty$ with $\tau'_n \ge \log n$.

The transfer function, residuals and their eigenvalues

+ $\{\hat{\varepsilon}_k\}_{2\leq k\leq n}$ are the residuals given by

$$\hat{\varepsilon}_{k} = X_{k} - \hat{\rho}\left(X_{k-1}\right)$$

for k = 2, ..., n.

• $\{\hat{\lambda}_j\}_{j\geq 1}$ are the eigenvalues of

$$\frac{1}{n-1}\sum_{k=2}^{n}\hat{\varepsilon}_{k}\otimes\hat{\varepsilon}_{k}.$$

• The transfer function $A(\omega) = (I - e^{-i\omega}\rho)^{-1}$ and hence $A^{-1}(\omega) = I - e^{-i\omega}\rho$ for $\omega \in [-\pi, \pi]$.

Theorem

Under H₀ and Assumptions 1 and 3,

$$G_n := \hat{\lambda}_1^{-1} \max_{1 \le j \le q} \| (I - e^{-i\omega_j} \hat{\rho}) (\mathcal{X}_n(\omega_j)) \|^2$$
$$-\log q + \max \left\{ \sum_{j=2}^{\tau_n} \log(1 - \hat{\lambda}_j / \hat{\lambda}_1), c_n \right\} \xrightarrow{d} \mathcal{G}$$

as $n \to \infty$, where $\{\tau_n\}_{n \ge 1} \subset \mathbb{N}$ and $\{c_n\}_{n \ge 1} \subset \mathbb{R}$ are sequences that satisfy certain technical conditions.

Theorem

Under H₁,

$$G_n/\ell_n \xrightarrow{p} \infty$$
 as $n \to \infty$

for any positive sequence $\ell_n = o(n)$ as $n \to \infty$ provided certain technical conditions are satisfied.

Empirical study

• We plot the points $(j, G_n(j))$ with $j = 1, \ldots, q = 1998$ and

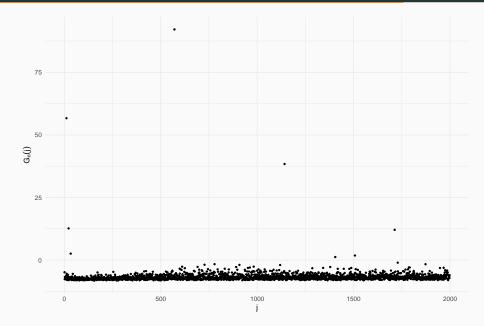
$$\begin{aligned} G_n(j) &\coloneqq \lambda_1^{-1} \| (I - e^{-i\omega_j} \hat{\rho}) (\mathcal{X}_n(\omega_j)) \|^2 \\ &- \log q + \max \bigg\{ \sum_{j=2}^{\tau_n} \log(1 - \hat{\lambda}_j / \hat{\lambda}_1), c_n \bigg\}, \end{aligned}$$

where n = 3997.

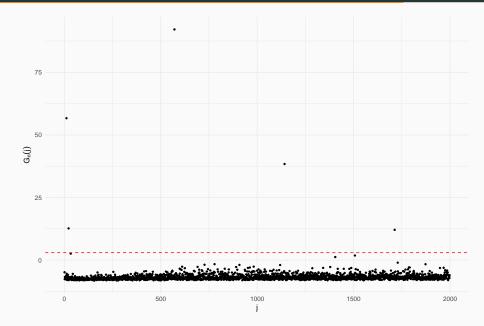
 \cdot Observe that

$$G_n = \max_{1 \le j \le q} G_n(j).$$

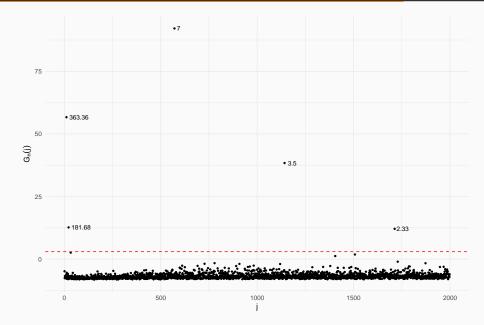
PM10 time series



PM10 time series



PM10 time series



Lemma

Suppose that $\{s_t\}_{t\in\mathbb{Z}}$ is a deterministic sequence with values in \mathbb{H} such that

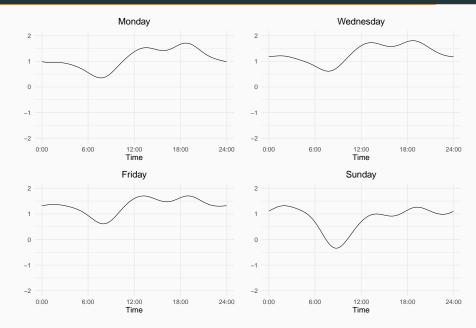
$$s_t = s_{t+T}$$
 and $\sum_{t=1}^{l} s_t = 0$

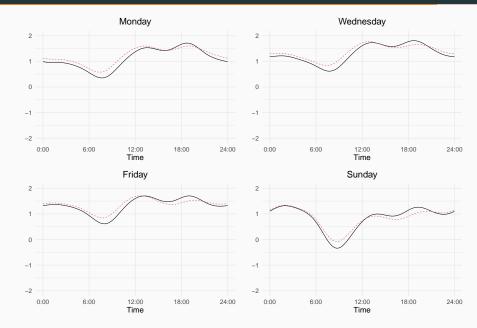
for all $t \in \mathbb{Z}$ with some $T \ge 2$. Then there exist $w_{11}, \ldots, w_{1\lfloor T/2 \rfloor} \in \mathbb{H}$ and $w_{21}, \ldots, w_{2\lfloor T/2 \rfloor} \in \mathbb{H}$ such that

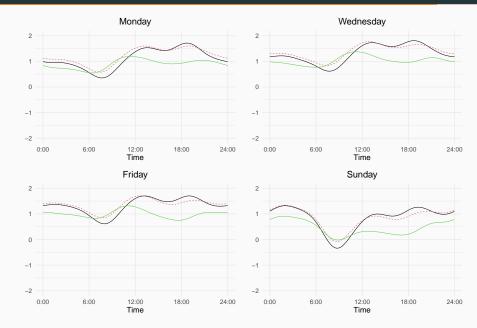
$$s_t = \sum_{k=1}^{\lfloor T/2 \rfloor} \left[\cos(2\pi kt/T) w_{1k} + \sin(2\pi kt/T) w_{2k} \right]$$

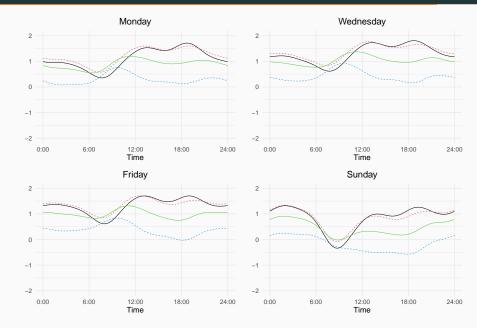
for all $t \in \mathbb{Z}$.

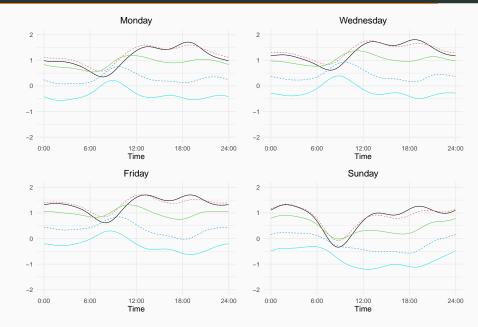
Yearly periodic component

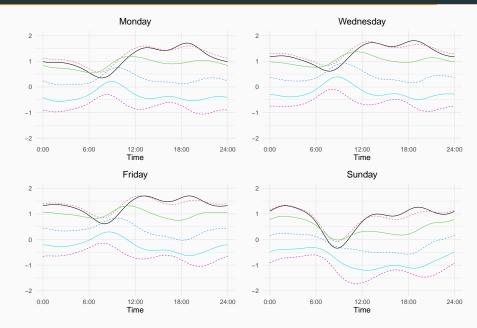


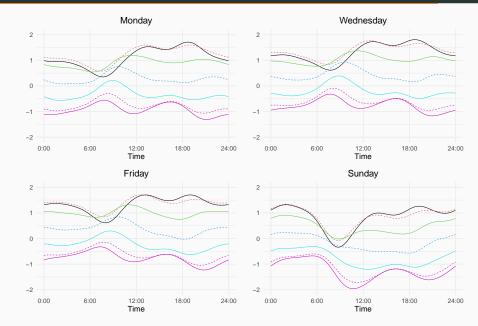




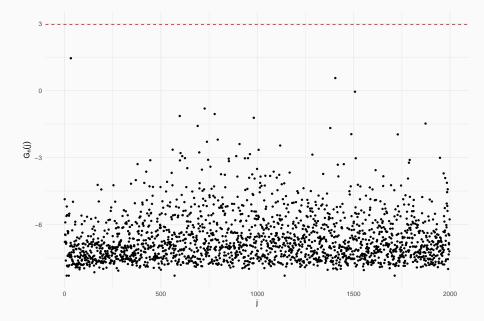








Deseasonalized data



Summary

- A general test for periodic signals in Hilbert space valued time series when the length of the period is unknown.
- The appropriately standardized maximum of the periodogram converges in distribution to the standard Gumbel distribution.
- A weekly as well as a yearly periodic components are detected in the PM10 data.
- The periodic signals in the PM10 data are not pure sinusoids but are actually driven by several sinusoids.

https://imada.sdu.dk/u/characiejus/