
The Maximum of the Periodogram of a Sequence of Functional Data

Vaidotas Characiejusa

Joint work with Clément Ceroveckib and Siegfried Hörmannc

Department of Economics, UC3M, Spain, September 11, 2023

aDepartment of Mathematics and Computer Science, University of Southern Denmark, Denmark

bDépartement de mathématique, Université libre de Bruxelles, Belgium

bDepartment of Mathematics, Katholieke Universiteit Leuven, Belgium

cInstitute of Statistics, Graz University of Technology, Austria



Periodic signals

• The focus of the talk is detection, analysis and estimation of
periodic signals in a sequence of functional data.

• Periodicities are one of the most important characteristics of
time series.

• The interest in periodicities goes back to the origins of the field
(Schuster [1898], Walker [1914], Yule [1927], Fisher [1929], etc.).
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Motivation and problem



PM10 data

• Air quality data from Graz, Austria.
• The amount of particulate matter with a diameter of 10 µm or
less (PM10) is measured.

• PM10 can settle in the bronchi and lungs and cause health
problems.

• Starting on February 18, 2010, the amount of PM10 in µg/m3 is
recorded every 30 minutes resulting in 48 observations per day.
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Raw data
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Weekly mean curve
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Weekly averages
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Functional time series

• We investigate the PM10 data as a functional time series, i.e., as
a sequence of daily curves.

• A functional time series is a sequence {Xt}t∈Z such that each Xt
is a curve {Xt(u)}u∈[0,1].

• We separate a continuous time process {ξ(u)}u∈R using natural
consecutive intervals, i.e.

Xt(u) = ξ(t+ u)

for u ∈ [0, 1] and t ∈ Z.
• Such segmentation accounts for a periodic structure in the
underlying continuous time process.

• There might still remain some periodic signal with respect to
the discrete time parameter t ∈ Z.
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Model

{Xt}t∈Z is a time series with values in a real separable Hilbert space
H (e.g. Rd with d ≥ 1, L2[0, 1], etc.) defined by

Xt = µ+ st + Yt

for each t ∈ Z, where

• µ ∈ H;
• {st}t∈Z ⊂ H is a deterministic sequence such that

st = st+T and
T∑

t=1
st = 0

for all t ∈ Z with some T ≥ 2;
• {Yt}t∈Z is a stationary sequence of zero mean random elements
with values in H.
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Hypothesis testing

We develop a methodology to test

H0 : Xt = µ+ Yt versus H1 : Xt = µ+ st + Yt

with an unknown T ≥ 2.
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Remark about T

• In practice, T can be assumed to be known or unknown
depending on the particular situation.

• In many situations, the potential periodic signal is, for example,
daily, weekly, monthly, or yearly.

• Even if T is known, it is still of interest to determine whether the
periodic signal can be modelled using a single sinusoid or it has
to be modelled by a superposition of several sinusoids.

• In some situations, it is very difficult to determine what the
value of T could be (for example, solar cycles have an average
duration of about 11 years).
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Test statistic



Frequency domain approach

Our methodology is based on the frequency domain approach to the
analysis of functional time series.

10/42



DFT and periodogram

Definition
The discrete Fourier transform (DFT) of X1, . . . , Xn is defined by

Xn(ωj) = n−1/2
n∑
t=1

Xte−itωj

for n ≥ 1, where ωj = 2πj/n with j ∈ Fn = {−⌊(n− 1)/2⌋, . . . , ⌊n/2⌋}
are the Fourier frequencies and i =

√
−1.

Definition
The periodogram operator of X1, . . . , Xn is defined by

In(ωj) = Xn(ωj)⊗Xn(ωj) = ⟨·,Xn(ωj)⟩Xn(ωj)

for n ≥ 1, where ωj = 2πj/n with j ∈ Fn are the Fourier frequencies.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

∥In(ωj)∥op = max
1≤j≤q

∥Xn(ωj)∥2

for n > 2, where

(i) ωj = 2πj/n with 1 ≤ j ≤ q = ⌊n/2⌋;
(ii) ∥ · ∥op is the operator norm and ∥ · ∥ is the norm of the

complexification of H.
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Intuition

Why the maximum of the periodogram?
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Orthonormal basis for Cn

• The vectors

ej = n−1/2( eiωj ei2ωj . . . einωj )′

with ωj = 2πj/n and j ∈ Fn constitute an orthonormal basis
for Cn.

• Recall Euler’s formula eix = cos x+ i sin x for x ∈ R.
• For x ∈ Cn,

x =
∑
j∈Fn

ajej,

where

aj = ⟨x, ej⟩ = n−1/2
n∑
t=1

xte−itωj

is the DFT of x at the frequency ωj with j ∈ Fn.
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Representation of periodic signals

Lemma
Suppose that {st}t∈Z is a deterministic sequence with values in H
such that st = st+T and

∑T
t=1 st = 0 for all t ∈ Z with some T ≥ 2.

Then there exist w11, . . . ,w1⌊T/2⌋ ∈ H and w21, . . . ,w2⌊T/2⌋ ∈ H such
that

st =
⌊T/2⌋∑
k=1

[
cos

(2πkt
T

)
w1k + sin

(2πkt
T

)
w2k

]
for all t ∈ Z. If, in addition, n = Tm, then

Sn(ωj) = n−1/2
n∑
t=1

ste−itωj =

n1/2(w1k − iw2k)/2, j = km,

0, j ̸= km,

where k = 1, . . . , ⌊T/2⌋.
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Periodic signal (T = 7, w11 = 2, w22 = 3, n = 49)
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Periodogram of periodic signal (T = 7, w11 = 2, w22 = 3, n = 49)
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Periodogram of N(0, 10) white noise
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Periodogram of periodic signal plus N(0, 10) white noise
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Periodogram of periodic signal plus N(0, 25) white noise
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

∥Xn(ωj)∥2

for n > 1.

• Small values of Mn indicate that there is no periodic component.
• Large values of Mn indicate that there is a periodic component.
• We need a criterion to decide when Mn is small and when Mn is
large.
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Main results



Results under Gaussianity in the univariate case

• The usefulness of the maximum of the periodogram for
detecting periodicities is well known (Fisher [1929]).

• First results were established under the assumption of
Gaussianity.

• An alternative approach is to establish the asymptotic
distribution of the appropriately standardized Mn under some
general conditions.
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Results under Gaussianity in the univariate case (cont.)

If X1, . . . , Xn are iid standard normal random variables,

Mn − log q d−→ G as n → ∞,

where q = ⌊n/2⌋ and G is the standard Gumbel distribution with the
CDF given by

F(x) = exp{− exp−x}

for x ∈ R.
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General results in the univariate case

• Walker [1965] conjectured that the same result holds provided
that the moments up to some sufficiently high order exist.

• Walker [1965] also stated that no proof was known at the time
and that the problem of constructing one is undoubtedly
extremely difficult.

• Davis and Mikosch [1999] proved that the limit indeed remains
the same provided that E|X1|s < ∞ with some s > 2 using a
Gaussian approximation technique due to Einmahl [1989].
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Our results

• Our main result is an extension of the result of Davis and
Mikosch [1999] to real separable Hilbert spaces.

• The main ingredient of our proof is a powerful Gaussian
approximation developed by Chernozhukov, Chetverikov, and
Kato [2017].

• Our results allow us to propose several methodologies to detect
periodic signals in Hilbert space valued time series when the
length of the period is unknown.
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Linear processes

Suppose that {Yt}t∈Z is a linear process with values in H given by

Yt =
∞∑

k=−∞

ak(εt−k)

for each t ∈ Z, where

• {εt}t∈Z are iid zero mean random elements with values in H;
• {ak}k∈Z ⊂ L(H).
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Assumptions

Assumption 1

i) E∥ε0∥r < ∞ where r > 2 if dimH < ∞ and r ≥ 4 otherwise;
ii) the eigenvalues λk of E[ε0 ⊗ ε0] are distinct and the sequence

{kλk}k≥1 is ultimately non-increasing;
iii) some technical conditions on the decay rate of {λk}k≥1.

Assumption 2

i)
∑

k̸=0 log(|k|)∥ak∥ < ∞;
ii) A−1(ω) exists for each ω ∈ [−π, π], where A(ω) =

∑∞
k=−∞ ake−ikω

with ω ∈ [−π, π] is the transfer function;
iii) supω∈[0,π] ∥A−1(ω)∥ < ∞.

27/42



Main result

Theorem
Under H0 and Assumptions 1 and 2, we have that

λ−1
1

(
max
1≤j≤q

∥A−1(ωj)Xn(ωj)∥2 − bn
)

d−→ G as n → ∞,

where

• A(ωj) =
∑∞

k=−∞ ake−ikωj with j = 1, . . . , q;
• bn = λ1 log q− λ1

∑∞
j=2 log(1− λj/λ1);

• G is the standard Gumbel distribution with the CDF given by
F(x) = exp{− exp{−x}} for x ∈ R.
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FAR(1)

{Yt}t∈Z is an FAR(1) model given by

Yt = ρ(Yt−1) + εt =
∞∑
j=0

ρj(εt−j)

for t ∈ Z with ρ ∈ L(H).

Assumption 3

i) There is an n0 ≥ 1 such that ∥ρn0∥ < 1;
ii) ρ̂ is an estimator of ρ such that

∥ρ̂− ρ∥op = op(1/τ ′n)

as n → ∞ with τ ′n ≥ log n.
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The transfer function, residuals and their eigenvalues

• {ε̂k}2≤k≤n are the residuals given by

ε̂k = Xk − ρ̂ (Xk−1)

for k = 2, . . . ,n.
• {λ̂j}j≥1 are the eigenvalues of

1
n− 1

n∑
k=2

ε̂k ⊗ ε̂k.

• The transfer function and its inverse are given by

A(ω) = (I− e−iωρ)−1 and A−1(ω) = I− e−iωρ

respectively for ω ∈ [−π, π].
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Test statistic

Theorem
Under H0 and Assumptions 1 and 3,

Gn := λ̂−1
1 max

1≤j≤q
∥(I− e−iωj ρ̂ )(Xn(ωj))∥2

− log q+max

{ τn∑
j=2

log(1− λ̂j/λ̂1), cn
}

d−→ G

as n → ∞, where {τn}n≥1 ⊂ N and {cn}n≥1 ⊂ R are sequences that
satisfy certain technical conditions.
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Consistency

Theorem
Under H1,

Gn/ℓn
p−→ ∞ as n → ∞

for any positive sequence ℓn = o(n) as n → ∞ provided certain
technical conditions are satisfied.
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Empirical study



Simulation setting

• We simulate functional time series that are stationary and
behaves similarly as the original PM10 data.

• The periodic component in the simulation study is given by

st(u) = a cos(2πt/d),

where u ∈ [0, 1] and d− 2 is a Poisson distributed random
variable Pλ with λ = 5 or λ = 15.

• a is equal to 0 (no periodic signal), 1 or 2.
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Empirical rejection rates

a = 0 (≡ H0) a = 1 a = 2
α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

λ = 5 n = 100 0.049 0.022 0.004 0.867 0.805 0.670 1.000 0.999 0.994
n = 200 0.074 0.034 0.005 0.990 0.983 0.972 1.000 1.000 1.000
n = 500 0.091 0.052 0.011 1.000 1.000 0.999 1.000 1.000 1.000

λ = 15 n = 100 0.067 0.030 0.004 0.260 0.172 0.072 0.837 0.773 0.629
n = 200 0.069 0.030 0.006 0.585 0.488 0.312 0.987 0.975 0.926
n = 500 0.093 0.044 0.007 0.990 0.979 0.946 1.000 1.000 1.000
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Transforming data into curves

• The data is preprocessed in the following way:
• the missing values are linearly interpolated;
• the negative values are set to 0 so that the square root
transformation can be performed;

• the raw observations are transformed into curves using the R
package fda and the function Data2fd() with 21 Fourier basis
functions.

• We use the PCA based estimator of ρ (‘Bosq [2000]).
• The tuning parameter kn which determines the number of
principal components used in the estimation procedure is
selected so that kn principal components explain more than
99% of the variance in our dataset.
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PM10 time series

• We plot the points (j,Gn(j)) with j = 1, . . . , q = 1998 and

Gn(j) := λ−1
1 ∥(I− e−iωj ρ̂ )(Xn(ωj))∥2

− log q+max

{ τn∑
j=2

log(1− λ̂j/λ̂1), cn
}
,

where n = 3997.
• Observe that

Gn = max
1≤j≤q

Gn(j).
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PM10 time series
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Estimation of periodic signals

The natural estimators of w1k and w2k are given by

ŵ1k =
2
n

n∑
t=1

Xt cos(2πkt/T) and ŵ2k =
2
n

n∑
t=1

Xt sin(2πkt/T)

with k = 1, . . . , ⌊T/2⌋.

38/42



Weekly periodic component
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Yearly periodic component
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Yearly periodic component
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Yearly periodic component
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Yearly periodic component
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Yearly periodic component
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Yearly periodic component
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Yearly periodic component
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Deseasonalized data

−6

−3

0

3

0 500 1000 1500 2000
j

G
n(j

)



Summary



Summary

• A general test for periodic signals in Hilbert space valued time
series when the length of the period is unknown.

• The appropriately standardized maximum of the periodogram
converges in distribution to the standard Gumbel distribution.

• A weekly as well as a yearly periodic components are detected
in the PM10 data.

• The periodic signals in the PM10 data are not pure sinusoids but
are actually driven by several sinusoids.

https://imada.sdu.dk/u/characiejus/
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