Levels of Abstraction in Computational Chemistry

Potential energy surface

Reaction coordinate

$$
L \leftarrow K \rightarrow R
$$

[Andersen et al., Proceedings of the Royal Society A, 2017]

Levels of Abstraction in Programming

Declarative Description \leftrightarrow DSL $\leftrightarrow \mathrm{C}++\leftrightarrow$ Assembler

Levels of Abstraction in Computer Science

"The psychological profiling [of a Computer Scientist] is mostly the ability to shift levels of abstraction, from low level to high level. To see something in the small and to see something in the large."

Donald Knuth

Modelling and Analysis of Chemical Systems

Modelling and Analysis of Chemical Systems

1. Model molecules as labelled graphs.

- An old idea: [J. J. Sylvester, Chemistry and Algebra, Nature 1878]
- Molecule: simple, connected, labelled graph.
- Vertex labels: atom type, charge.
- Edge labels: bond type.

Modelling and Analysis of Chemical Systems

2. Model reaction types and graph transformation rules.

Example: Carbon rearrangement

- Aldolase: ketone + aldehyde \longrightarrow ketone
- Aldose-Ketose: aldehyde \longrightarrow ketone
- Ketose-Aldose: ketone \longrightarrow aldehyde
- Phosphohydrolase: $\mathrm{H}_{2} \mathrm{O}+\mathrm{CnP} \longrightarrow \mathrm{Cn}+\mathrm{Pi}$
- Phosphoketolase Pi+ketone \longrightarrow carbonyl $+\mathrm{CnP}+$ water
- Transaldolase: $\mathrm{Cn}+\mathrm{Cm} \longrightarrow \mathrm{C}(\mathrm{n}+3)+\mathrm{C}(\mathrm{m}-3)$
- Transketolase: $\mathrm{Cn}+\mathrm{Cm} \longrightarrow \mathrm{C}(\mathrm{n}+2)+\mathrm{C}(\mathrm{m}-2)$

Chemical Reactions (Educts \rightarrow Products)

Chemical Reactions (of the Same Type)

Chemical Reaction Patterns

Rule

Educts

Chemical Reaction Patterns

Chemical Reaction Patterns

Rule

Grammar Example: The Formose Chemistry

Formaldehyde: Glycolaldehyde: Keto-enol tautomerism:

Aldol addition:

Retro aldol addition:

Modelling and Analysis of Chemical Systems

3. Generate a reaction network.
```
dg = dgRuleComp(inputGraphs,
    addSubset(inputGraphs) >> rightPredicate[
            lambda d: all(countCarbon(a) <= 5 for a in d.right)
    ] repeat(inputRules) )
)
dg.calc()
```


Modelling and Analysis of Chemical Systems

4. Set up pathway model.

Conservation constraints:

$$
\sum_{e \in \delta_{\vec{E}}^{+}(v)} m_{v}\left(e^{+}\right) f(e)-\sum_{e \in \delta_{\vec{E}}^{-}(v)} m_{v}\left(e^{-}\right) f(e)=0 \quad \forall v \in \widetilde{V}
$$

Modelling and Analysis of Chemical Systems

5. Formulate pathway question.

Example: Given 2 formaldehyde and 1 glycolaldehyde, how can 2 glycolaldehyde be produced through autocatalysis.

Category Theory: Mathematistan

Daniel: quite nice. though wrong, as category theory probably is not just a region
Jakob: hehe, ye, category theory is when you drank a too much wine, look at the map, and it suddenly it says "category theory" all over
[Figure by Martin Kuppe]

A Chemical Graph Transformation System

Objects:

- Molecule graph
- Molecule collection
- Pattern match

Operations:

- Substructure search
- Molecule equivalence
- Rule application
- Transformation rule
- Reaction network
- ...
- Reaction network generation
- Isotope tracing
- ...

Fundamental operation: composition of transformation rules Mathematical framework: category theory

Categories

A category C:

- A class of objects: $\mathrm{Ob}(\mathbf{C})$
E.g., connected, labelled graphs.
- A class of morphisms: $\operatorname{Mor}(\mathbf{C})$
E.g., graph monomorphisms, with label constraints.
- An associative morphism composition operator: ○

Graph Morphisms

Def. graph morphism: $m: G \rightarrow H$ with

$$
\forall e=(u, v) \in E_{G}: m(e)=(m(u), m(v)) \in E_{H}
$$

NP-complete (e.g., reduce from Graph Colouring).

(a) A morphism.

Graph Morphisms

Def. graph monomorphism: an injective graph morphism i.e., $\forall u, v \in V_{G}, u \neq v \Rightarrow m(u) \neq m(v)$.

NP-complete (e.g., reduce from Hamiltonian Cycle).

(a) A morphism.

(b) A monomorphism.

Graph Morphisms

Def. subgraph isomorphism: a graph monomorphism with

$$
(u, v) \in E_{G} \Leftrightarrow(m(u), m(v)) \in E_{H}
$$

NP-complete (e.g, reduce from Clique).

(a) A morphism.

(c) A subgraph isomorphism.

Graph Morphisms

Def. graph isomorphism: a subgraph isomorphism which is a bijection of the vertices.
Unknown if in P or is NP-complete. $\ln 2^{O\left(\log ^{c} n\right)}$ [Babai, 2016].

(a) A morphism.

(c) A subgraph isomorphism.

(b) A monomorphism.

(d) An isomorphism.

Graph Morphisms

A pattern match: a monomorphism
Substructure search: monomorphism enumeration Molecule equivalence: isomorphism detection

(a) A morphism.

(c) A subgraph isomorphism.

(b) A monomorphism.

(d) An isomorphism.

Graph Transformation

Graph Transformation Rules

Vertices and edges are either deleted, preserved, or added. As a Double Pushout (DPO) rule $p=(L \stackrel{I}{\leftarrow}$ 号 R):

Intended semantics:

- $L \backslash K$ is deleted.
- K is preserved.
- $R \backslash K$ is added.
- For chemistry: I and r are monomorphisms.

Pushout

Given $C \leftarrow A \rightarrow B$,

Pushout

Given $C \leftarrow A \rightarrow B$, the pushout is $f^{\prime}, g^{\prime}, D$ iff

- the square commutes: $f g^{\prime}=g f^{\prime}$, and

Pushout

Given $C \leftarrow A \rightarrow B$, the pushout is $f^{\prime}, g^{\prime}, D$ iff

- the square commutes: $f g^{\prime}=g f^{\prime}$, and
- there are no "better" candidates:
for all commuting $g^{\prime \prime}, f^{\prime \prime}, D^{\prime \prime}$:
$d^{\prime \prime}$ exists, commutes, and is unique.

Graph Pushouts (Generalised ‘union’ for Graphs)

 "The square must commute":

Graph Pushouts (Generalised 'union’ for Graphs)

 "The square must commute":

Graph Pushouts (Generalised 'union’ for Graphs)

"There are no better candidates": counter-example

- It commutes!

Graph Pushouts (Generalised 'union' for Graphs)

"There are no better candidates": counter-example

- It commutes!
- But D is "too small" (no commuting morphisms $D \rightarrow D^{\prime \prime}$).

Pushout Complement

Given $A \rightarrow B \rightarrow D$, find the pushout complement $A \rightarrow C \rightarrow D$: $B \rightarrow D \leftarrow C$ must be a pushout of $C \leftarrow A \rightarrow B$.

Pushout Complement

Given $A \rightarrow B \rightarrow D$, find the pushout complement $A \rightarrow C \rightarrow D$: $B \rightarrow D \leftarrow C$ must be a pushout of $C \leftarrow A \rightarrow B$.

The Dual: Pullback

Given $C \rightarrow D \leftarrow B$, find the pullback $C \leftarrow A \rightarrow B$.

The Dual: Pullback

Given $C \rightarrow D \leftarrow B$, find the pullback $C \leftarrow A \rightarrow B$.

Graph Pullbacks

"There are no better candidates": counter-example

Graph Pullbacks

"There are no better candidates": counter-example

Rule Application

G
Given a rule $p=(L \stackrel{\iota}{\leftarrow} K \xrightarrow{r} R)$ and a graph G,

Rule Application

find a monomorphism $m: L \rightarrow G$,

Rule Application

construct D as the pushout complement of $K \rightarrow L \rightarrow G$,

Rule Application

and construct H as the pushout object of $D \leftarrow K \rightarrow R$.

Chemical Rule Application

Two categories:

- For reactions: C, undirected graphs.
- For molecules: \mathbf{C}^{\prime}, connected undirected graphs.

Conclusions

Conclusions

