
Levels of Abstraction in Computational Chemistry
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Levels of Abstraction in Programming

Declarative Description ↔ DSL ↔ C++ ↔ Assembler
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Levels of Abstraction in Computer Science

“The psychological profiling [of a Computer Scientist] is mostly the
ability to shift levels of abstraction, from low level to high level. To

see something in the small and to see something in the large.”

Donald Knuth
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Modelling and Analysis of Chemical Systems

1. Model molecules as labelled graphs.
I An old idea: [J. J. Sylvester, Chemistry and Algebra, Nature 1878]
I Molecule: simple, connected, labelled graph.
I Vertex labels: atom type, charge.
I Edge labels: bond type.
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Modelling and Analysis of Chemical Systems
2. Model reaction types and graph transformation rules.
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Example: Carbon rearrangement
I Aldolase: ketone + aldehyde −→ ketone
I Aldose-Ketose: aldehyde −→ ketone
I Ketose-Aldose: ketone −→ aldehyde
I Phosphohydrolase: H2O+CnP −→ Cn+Pi
I Phosphoketolase Pi+ketone −→ carbonyl + CnP+water
I Transaldolase: Cn+Cm−→ C(n+3)+C(m-3)
I Transketolase: Cn+Cm−→ C(n+2)+C(m-2)
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Chemical Reactions (Educts → Products)
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Chemical Reactions (of the Same Type)
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Chemical Reaction Patterns

C

O

HH

C

O

H H

O

C

C

O

H

H

H

H

Educts

C

O

HH

C

O

H H

O

C

C

O

H

H

H

H

Products

C

O

O

C

C

H

C

O

O

C

C

H

pattern match

Reaction

Rule

9/48



Chemical Reaction Patterns

C

O

HH

C

O

H H

O

C

C

O

H

H

H

H

Educts

C

O

HH

C

O

H H

O

C

C

O

H

H

H

H

Products

C

O

O

C

C

H

C

O

O

C

C

H

pattern match

Reaction

Rule

9/48



Chemical Reaction Patterns

C

O

HH

C

O

H H

O

C

C

O

H

H

H

H

Educts

C

O

HH

C

O

H H

O

C

C

O

H

H

H

H

Products

C

O

O

C

C

H

C

O

O

C

C

H

pattern match

Reaction

Rule

9/48



Grammar Example: The Formose Chemistry
Formaldehyde:
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Modelling and Analysis of Chemical Systems
3. Generate a reaction network.
dg = dgRuleComp ( inputGraphs ,

addSubset ( inputGraphs ) >> rightPredicate [
lambda d: all( countCarbon (a) <= 5 for a in d. right )

]( repeat ( inputRules ) )
)
dg.calc ()
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Modelling and Analysis of Chemical Systems
4. Set up pathway model.

Network Extended
network

Expanded
network ILP
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Modelling and Analysis of Chemical Systems
5. Formulate pathway question.

Example: Given 2 formaldehyde and 1 glycolaldehyde, how can 2
glycolaldehyde be produced through autocatalysis.
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Category Theory: Mathematistan

Daniel: quite nice. though wrong, as category theory probably is not
just a region

Jakob: hehe, ye, category theory is when you drank a too much wine,
look at the map, and it suddenly it says “category theory” all over

[Figure by Martin Kuppe]
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A Chemical Graph Transformation System
Objects:

I Molecule graph
I Molecule collection
I Pattern match

I Transformation rule
I Reaction network
I . . .

Operations:
I Substructure search
I Molecule equivalence
I Rule application

I Reaction network
generation

I Isotope tracing
I . . .

Fundamental operation: composition of transformation rules
Mathematical framework: category theory
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Categories

A category C:
I A class of objects: Ob(C)

E.g., connected, labelled graphs.
I A class of morphisms: Mor(C)

E.g., graph monomorphisms, with label constraints.
I An associative morphism composition operator: ◦
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Graph Morphisms
Def. graph morphism: m : G → H with

∀e = (u, v) ∈ EG : m(e) = (m(u), m(v)) ∈ EH .
NP-complete (e.g., reduce from Graph Colouring).

G H

(a) A morphism.

G H

(b) A monomorphism.

G H

(c) A subgraph isomorphism.

G H

(d) An isomorphism.
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Graph Morphisms
Def. graph monomorphism: an injective graph morphism

i.e., ∀u, v ∈ VG , u 6= v ⇒ m(u) 6= m(v).
NP-complete (e.g., reduce from Hamiltonian Cycle).

G H

(a) A morphism.

G H

(b) A monomorphism.

G H

(c) A subgraph isomorphism.

G H

(d) An isomorphism.
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Graph Morphisms
Def. subgraph isomorphism: a graph monomorphism with

(u, v) ∈ EG ⇔ (m(u), m(v)) ∈ EH .
NP-complete (e.g, reduce from Clique).

G H

(a) A morphism.

G H

(b) A monomorphism.

G H

(c) A subgraph isomorphism.

G H

(d) An isomorphism.
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Graph Morphisms
Def. graph isomorphism: a subgraph isomorphism which is

a bijection of the vertices.
Unknown if in P or is NP-complete.
In 2O(logc n) [Babai, 2016].
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(a) A morphism.
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(b) A monomorphism.
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(c) A subgraph isomorphism.

G H

(d) An isomorphism.
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Graph Morphisms
A pattern match: a monomorphism
Substructure search: monomorphism enumeration
Molecule equivalence: isomorphism detection

G H

(a) A morphism.
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(b) A monomorphism.
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(c) A subgraph isomorphism.

G H

(d) An isomorphism.
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Graph Transformation
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Graph Transformation Rules
Vertices and edges are either deleted, preserved, or added.
As a Double Pushout (DPO) rule p = (L l←− K r−→ R):
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Intended semantics:
I L\K is deleted.
I K is preserved.
I R\K is added.
I For chemistry: l and r are monomorphisms.
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Pushout
Given C ← A→ B,

I the square commutes: fg ′ = gf ′, and
I there are no “better” candidates:

for all commuting g ′′, f ′′, D′′:
d ′′ exists, commutes, and is unique.

A B

C

f

g
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Pushout
Given C ← A→ B, the pushout is f ′, g ′, D iff
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Graph Pushouts (Generalised ‘union’ for Graphs)
“The square must commute”:
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Graph Pushouts (Generalised ‘union’ for Graphs)
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Graph Pushouts (Generalised ‘union’ for Graphs)
“There are no better candidates”: counter-example

A B

C D

D′′

I It commutes!

I But D is “too small” (no commuting morphisms D → D′′).
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Pushout Complement
Given A→ B → D, find the pushout complement A→ C → D:

B → D ← C must be a pushout of C ← A→ B.

A B

D
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The Dual: Pullback
Given C → D ← B, find the pullback C ← A→ B.
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The Dual: Pullback
Given C → D ← B, find the pullback C ← A→ B.
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Graph Pullbacks
“There are no better candidates”: counter-example
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C D

A′′
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Rule Application
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Given a rule p = (L l←− K r−→ R) and a graph G ,
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find a monomorphism m : L→ G ,
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Rule Application
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and construct H as the pushout object of D ← K → R.
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Chemical Rule Application
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Two categories:
I For reactions: C, undirected graphs.
I For molecules: C′, connected undirected graphs.
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Conclusions
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