# Graph Canonicalization <br> Graph Isomorphism <br> Graph Automorphisms 

DM840, Week 37

## Motivation

I have two molecules, are they actually 'the same' molecule?
(Graph isomorphism (potentially via canonicalization))

Which symmetries does this molecule have?
("symmetry" $\equiv$ "automorphism", "all symmetries" $\equiv$ "the automorphism group")

I have many molecules, and just got one more, do I have it already?
(Graph isomorphism (likely via canonicalization))

I generate molecules in different ways, and store them. I want each molecule to always be stored in the same way, no matter how it was generated.
(Graph canonicalization)

## Introduction

The Real World
That messy thing we are trying to study (with computers).

## Introduction

The Real World
That messy thing we are trying to study (with computers).
Model
A mathematical object in some class $M$.

## Introduction

The Real World
That messy thing we are trying to study (with computers).
Model
A mathematical object in some class $M$.
Representation
An object of an abstract data type $R$ used to store the model.

## Introduction

The Real World
That messy thing we are trying to study (with computers).
Model
A mathematical object in some class $M$.
Representation
An object of an abstract data type $R$ used to store the model.
Implementation
An object of a concrete type used to store the model.

## Introduction

The Real World
That messy thing we are trying to study (with computers).
Model
A mathematical object in some class $M$.
Representation
An object of an abstract data type $R$ used to store the model.
Implementation
An object of a concrete type used to store the model.

Our Subject: the relationship between models and representations.

## Fractions

Model
A mathematical object in some class $M$.
Example: a rational number, $\frac{3}{4}$
Representation
An object of an abstract data type $R$ used to store the model. Example: a pair of integers, $(3,4)$

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

## Fractions

Model
A mathematical object in some class $M$.
Example: a rational number, $\frac{3}{4}$
Representation
An object of an abstract data type $R$ used to store the model. Example: a pair of integers, $(3,4)$

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)
When are two fractions 'the same'?
Are $\frac{2}{5}$ and $\frac{4}{10}$ the same thing? yes!
Note: Our representation set $R$ may be redundant.

## Terminology and Notation

"Equal" can mean multiple things:

- Isomorphism, representing the same model.

Often a relatively computationally expensive to check.
$(2,5) \cong(4,10)$
("isomorphic to")

- Representational equality, the data structures are equal. Usually straight-forward and cheap to check.
$(2,5) \stackrel{r}{=}(2,5) \quad$ ("representationally equal to")
- Alias, the names refer to the same mathematical object. $A=B$


## Canonicalization

Given a representation $G \in R$ find a new representation $C(G)$, a canonical form, such that:

- It represents the same model: $C(G) \cong G$
- All canonicalized isomorphic representations are the same:

$$
\forall G^{\prime} \in R, G^{\prime} \cong G: \quad C\left(G^{\prime}\right) \stackrel{r}{=} C(G)
$$

How do we specify and implement canonicalization in practice?

## Representations

Besides the $\stackrel{r}{=}$ operation we need:

- A class of operations, Op, that do not change the model.
- A total order $\stackrel{r}{<}$ among (isomorphic) representations.


## Representations

Besides the $\stackrel{r}{=}$ operation we need:

- A class of operations, Op, that do not change the model.
- A total order $\stackrel{r}{<}$ among (isomorphic) representations.

Fraction Example:
Op:

- Multiplying with an integer: $(2,5) \cdot 2=(2 \cdot 2,2 \cdot 5) \cong(2,5)$
- Dividing with a common factor: $\frac{(4,10)}{2}=\left(\frac{4}{2}, \frac{10}{2}\right) \cong(4,10)$
- (and compositions of those operations)


## Representations

Besides the $\stackrel{r}{=}$ operation we need:

- A class of operations, Op, that do not change the model.
- A total order $\stackrel{r}{<}$ among (isomorphic) representations.


## Fraction Example:

Op:

- Multiplying with an integer: $(2,5) \cdot 2=(2 \cdot 2,2 \cdot 5) \cong(2,5)$
- Dividing with a common factor: $\frac{(4,10)}{2}=\left(\frac{4}{2}, \frac{10}{2}\right) \cong(4,10)$
- (and compositions of those operations)
$\stackrel{r}{<}$ :
- Prefer both positive over both negative: $(2,5) \underset{r}{r}<(-2,-5)$
- Prefer (neg., pos.) over (pos., neg.): $(-2,5) \stackrel{r}{<}(2,-5)$
- Prefer smaller (absolute) numbers (lexicographically):

$$
(2,5) \stackrel{r}{<}(4,10), \quad(1,2) \stackrel{r}{<}(2,3)
$$

## Canonicalization

Given $G \in R$ :

- Find an operation op $\in$ Op that produces the $\stackrel{r}{<}$-smallest representation.
- Return that representation $o p(G)$ as the canonical form.

Fraction Example:
Given $(a, b)$,

- Find $f=G C D(|a|,|b|)$
- If $b<0$ : let $o p=\operatorname{Div}(f) \circ \operatorname{MuL}(-1)$
else: let $o p=\operatorname{Div}(f)$
- Return op $((a, b))$

In Practice:

- Probably return op. The user can compute $o p(G)$ if needed.
- $\stackrel{r}{<}$ may be implicitly defined by the canonicalization algorithm.


## Example: Circular RNA (circRNA)

Representation: A sequence of symbols A, C, G, U. Example: AGUGCAGUGC

Operations: Rotate( $i$ ), for $i \in \mathbb{Z}$
Example: Rotate(2, AGUGCAGUGC) = UGCAGUGCAG
$\stackrel{r}{=}$ and $\stackrel{r}{<}$ : component-wise and lexicographic comparison
Canonicalization: find the lexicographically smallest rotation (can be done in linear time)

## Example: Circular RNA (circRNA)

Representation: A sequence of symbols A, C, G, U. Example: AGUGCAGUGC

Operations: Rotate( $i$ ), for $i \in \mathbb{Z}$


Example: Rotate(2, AGUGCAGUGC) $=$ UGCAGUGCAG
$\stackrel{r}{=}$ and $\stackrel{r}{<}$ : component-wise and lexicographic comparison
Canonicalization: find the lexicographically smallest rotation (can be done in linear time)

Symmetry Discovery: $o p$ is a symmetry if $o p(G) \stackrel{r}{=} G$
Example: Rotate(5) is a symmetry of AGUGCAGUGC, because Rotate(5, AGUGCAGUGC) $=$ AGUGCAGUGC
$\stackrel{r}{=}$ AGUGCAGUGC
Rotate(0) is a trivial symmetry

## Example: Double Stranded RNA

Representation:
A pair of sequences of symbols $A, C, G, U$, of equal length. Example: $\begin{aligned} & \text { AGUGC } \\ & \text { UCACG }\end{aligned}$

Operations: Reverse o Swap
Example: (REVERSE $\circ$ SWAP) $\binom{$ AGUGC }{ UCACG }$=\begin{gathered}\text { GCACU } \\ \text { CGUGA }\end{gathered}$
$\stackrel{r}{=}$ and $\stackrel{r}{<}$ : component-wise and lexicographic comparison Example: $\begin{aligned} & \text { AGUGC } \\ & \text { UCACG }\end{aligned} \stackrel{r}{<}$ GCACU

Canonicalization: take the $\stackrel{r}{<}$-smallest of the two possibilities

## Permutations

Permutation: a 1-to-1 map $\gamma: S \rightarrow S$.
Usually $S$ is the positions of a list $\{1,2, \ldots, n\}$.
Example:
Table/matrix notation:

| $i$ | 1 | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- |
| $\gamma(i)$ | 3 | 4 | 1 | 2 |

Cycle notation:
(13)(2 4)

We use the notation $i^{\gamma}$ instead of $\gamma(i)$.
So $\sigma(\gamma(i))$ will be $\left(i^{\gamma}\right)^{\sigma}=i^{\gamma \sigma}$.

## Permutations

Permutation: a 1-to-1 map $\gamma: S \rightarrow S$.
Usually $S$ is the positions of a list $\{1,2, \ldots, n\}$.
Example:

Table/matrix notation:

| $i$ | 1 | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- |
| $\gamma(i)$ | 3 | 4 | 1 | 2 |

(1 3)(2 4)

We use the notation $i^{\gamma}$ instead of $\gamma(i)$.
So $\sigma(\gamma(i))$ will be $\left(i^{\gamma}\right)^{\sigma}=i^{\gamma \sigma}$.
Permuting a Set:
For a set $X$, we use $X^{\gamma}$ to mean $\left\{x^{\gamma} \mid x \in X\right\}$.
Example:
For $\gamma=(13)(24)$ and $X=\{2,3\}$ we get $X^{\gamma}=\left\{2^{\gamma}, 3^{\gamma}\right\}=\{4,1\}$

## Graph Representation

$$
G=(V, E) \quad V=\{1,2, \ldots, n\}
$$

Isomorphic graphs, different representations:

$G_{1}$


G

$G_{2}$

Adjacency matrix representation:


Adjacency list representation (with sorted neighbour lists):
1: 4
1: 2, 3, 4
1: 4
2: 3, 4
2: 1
3: 1, 4
2: 3, 4
3: 2, 4
4: 1, 2, 3
4: 1, 3
3: 2, 4
4: 1, 2, 3

## Graph Representation

$$
G=(V, E) \quad V=\{1,2, \ldots, n\}
$$

Isomorphic graphs, different representations:


G1


$$
G_{1}^{\pi_{1}} \stackrel{r}{=} G \stackrel{r}{=} G_{2}^{\pi_{2}}
$$


$G_{2}$

Adjacency matrix representation:

$$
\begin{aligned}
& \begin{array}{l|llll} 
& 1 & 2 & 3 & 4 \\
\hline 1 & & 1 \\
2 & & 1 & 1 \\
3 & & 1 & 1 \\
4 & 1 & 1 & 1
\end{array} \\
& \\
& \begin{array}{l|llll} 
& 1 & 2 & 3 \\
\hline 1 & & 4 \\
2 & & 1 & 1 \\
3 & & 1 & 1 \\
4 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Adjacency list representation (with sorted neighbour lists):
1: 4
1: 2, 3, 4
1: 4
2: 3, 4
3: 2, 4
2: 1
3: 1, 4
2: 3, 4
4: 1, 2, 3
4: 1, 3
3: 2, 4
4: 1, 2, 3

## Graph Representation

$$
G=(V, E) \quad V=\{1,2, \ldots, n\}
$$

Isomorphic graphs, different representations:


G1


$$
G_{1}^{\pi_{1}} \stackrel{r}{=} G \stackrel{r}{=} G_{2}^{\pi_{2}}
$$


$G_{2}$

Adjacency matrix representation:

$$
\begin{aligned}
& \begin{array}{l|llll} 
& 1 & 2 & 3 \\
\hline 1 & & 4 \\
2 & & 1 \\
3 & & 1 & 1 \\
4 & 1 & 1 \\
4 & 1 & 1 & 1
\end{array} \\
& \\
& \begin{array}{l|llll} 
& 1 & 2 & 3 & 4 \\
\hline 1 & & 1 \\
2 & & 1 & 1 \\
3 & & 1 & 1 \\
4 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Adjacency list representation (with sorted neighbour lists):
1: 4
2: 3, 4
3: 2, 4
4: 1, 2, 3
1: 2, 3, 4
1: 4
2: 1
3: 1, 4
2: 3, 4
4: 1, 3
3: 2, 4
4: 1, 2, 3

Optional exercise: try permuting an adjacency list/matrix by hand.

## Graphs Canonicalization

Model: A graph $G=(V, E)$.
Representation: An adjacency list/matrix which implicitly assigns $1,2, \ldots, n$ to $V$.

Operations: PERMUTE $(\gamma)$ for any permutation of $1,2, \ldots, n$.
$\stackrel{r}{=}$ and $\stackrel{r}{<}$ : component-wise and lexicographic comparison
Computational Complexity: $\exp (O(\sqrt{n \log n}))$
Brute-Force Algorithm:

1. Construct $G^{\gamma}$ for all permutations $\gamma \in S_{n}$.
2. Select the "best" one (for example the $\stackrel{r}{<}$-smallest).

Generally not feasible to check all $n$ ! permutations of $n$ vertices.
[Babai and Luks, STOC, 1983]
[Babai, Handbook of Combinatorics, 1996]

## Existing Tools for Canonicalization in Practice

Published Tools: nauty, Traces, Bliss (and Saucy and Conauto)

- All based on the idea of individualization-refinement.
- Different sets of heuristics and variations.
- Many more algorithm variations are possible.
- Which is the best? for a specific class of graphs?
- What if the graph has vertex and edge labels?
- What if those labels are "complicated"? (e.g., stereo-info)

[^0]
## Existing Tools for Canonicalization in Practice

Published Tools: nauty, Traces, Bliss (and Saucy and Conauto)

- All based on the idea of individualization-refinement.
- Different sets of heuristics and variations.
- Many more algorithm variations are possible.
- Which is the best? for a specific class of graphs?
- What if the graph has vertex and edge labels?
- What if those labels are "complicated"? (e.g., stereo-info)

GraphCanon: [Andersen and Merkle, ALENEX, 2018]

- A generic C++ library for canonization algorithms.
- Code: https://github.com/jakobandersen/graph_canon
- Visualizer:
https://jakobandersen.github.io/graph_canon_vis
[McKay, Congressus Numerantium, 1981] [McKay and Piperno, J. Symb. Comp., 2014] [Junttila and Kaski, ALENEX, 2007] [Darga et al., DAC, 2008] [López-Presa and Fernández Anta, SEA, 2009]


## Individualization-Refinement

Idea:

- We need an order of the vertices.
- In the beginning, we don't know anything about that order.
- That is, we start with a set of vertices and must create a sequence of vertices.
- We can decide the rules for the ordering.
- Use "easy" rules to introduce order gradually.

Example: Initially we have a set $V=\{1,2,3,4\}$.


Can we define some (partial) order without looking at the indices?

## Individualization-Refinement Paradigm

 Initially: all vertices are unordered (same colour).

## Individualization-Refinement Paradigm

Refine the ordering by propagation of "cheap" local information. Example: sort and partition by degree (1D Weisfeiler-Leman).

| 1 |
| :---: |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |


[12|345678910]

## Individualization-Refinement Paradigm

Refine the ordering by propagation of "cheap" local information.
Example: sort and partition by degree (1D Weisfeiler-Leman).

| 1 |
| :---: |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |


[12345678910]

[12|345678910]

$\left[\begin{array}{ll|ll|l|ll}1 & 2 & 78910 \mid & 4 & 5\end{array}\right]$

## Individualization-Refinement Paradigm

Let this be the root of a search tree, and select a colour.
For each vertex of that colour;
create a child with this vertex given a unique new colour.


## Individualization-Refinement Paradigm



$$
\pi_{(2)}=\left[\begin{array}{llllllllllll}
2 \mid & 1 & 8 & 9 & 10 \mid & 4 \mid & 6
\end{array}\right]
$$


$\pi_{(1,7)}=[1|2| 7|10| 8|9| 6|5| 4 \mid 3]$

$\pi_{(1,8)}=[1|2| 8|9| 7|10| 5|6| 3 \mid 4]$

$\pi_{(1,9)}=[1|2| 9|8| 10|7| 6|5| 3 \mid 4]$

## Labelled Graphs

Consider molecules, what about the atom types?


## Labelled Graphs

Consider molecules, what about the atom types?


Vertex labels: use them to make an initial partial order. Edge labels: compare them as part of $\stackrel{r}{<}$.

## Abstract Algorithm

- Construct the search tree.
- For each leaf, construct the permuted graph using the discrete partition as a vertex permutation.
- For two such permuted graphs $G^{\overline{\pi_{1}}}$ and $G^{\overline{\pi_{2}}}$,
- if $G^{\overline{\pi_{1}}} \stackrel{r}{<} G^{\overline{\pi_{2}}}$, discard $\pi_{2}$,
- if $G^{\overline{\pi_{1}}} \stackrel{r}{=} G^{\overline{\pi_{2}}}$, yield $\overline{\pi_{1}} \pi_{2}$ as automorphism, and discard either $\pi_{1}$ or $\pi_{2}$.
- Return the permutation represented by the remaining leaf.


## Pruning Techniques

- Use automorphisms to skip redundant subtrees.
- Use node invariants to remove subtrees (possibly changing which leaves are ever constructed).


## Algorithm Variation

## Categories

- Tree traversal
- Target cell selection
- Refinement
- Pruning with automorphisms
- Detection of implicit automorphisms
- Node invariants


## Final Notes

- Canonicalization is a general concept for representations of models. Note just graphs.


## Final Notes

- Canonicalization is a general concept for representations of models. Note just graphs.
- It is entirely a core Computer Science problem.


## Final Notes

- Canonicalization is a general concept for representations of models. Note just graphs.
- It is entirely a core Computer Science problem.
- It can be non-trivial to create a correct and good algorithm,


## Final Notes

- Canonicalization is a general concept for representations of models. Note just graphs.
- It is entirely a core Computer Science problem.
- It can be non-trivial to create a correct and good algorithm,
- so probably find a good library for it,


## Final Notes

- Canonicalization is a general concept for representations of models. Note just graphs.
- It is entirely a core Computer Science problem.
- It can be non-trivial to create a correct and good algorithm,
- so probably find a good library for it,
- but be very careful: there are unfortunately several bad cheminformatics papers on this topic.
[Weininger et al., Algorithm for Generation of Unique SMILES Notation, 1988]
[Schneider et al., Get Your Atoms in Order - An Open-Source Implementation
of a Novel and Robust Molecular Canonicalization Algorithm, 2015]
Note: neither paper has a proof of correctness.
Rule of thumb: if the so-called algorithm has a "tie-breaking" step, it's probably wrong.


[^0]:    [McKay, Congressus Numerantium, 1981] [McKay and Piperno, J. Symb. Comp., 2014] [Junttila and Kaski, ALENEX, 2007] [Darga et al., DAC, 2008] [López-Presa and Fernández Anta, SEA, 2009]

