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Motivation
I have two molecules, are they actually ‘the same’ molecule?
(Graph isomorphism (potentially via canonicalization))

Which symmetries does this molecule have?
(“symmetry” ≡ “automorphism”, “all symmetries” ≡ “the automorphism
group”)

I have many molecules, and just got one more, do I have it already?
(Graph isomorphism (likely via canonicalization))

I generate molecules in different ways, and store them. I want each
molecule to always be stored in the same way, no matter how it
was generated.
(Graph canonicalization)
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Introduction
The Real World

That messy thing we are trying to study (with computers).

Model
A mathematical object in some class M.

Representation
An object of an abstract data type R used to store the model.

Implementation
An object of a concrete type used to store the model.

Our Subject: the relationship between models and representations.
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Fractions
Model

A mathematical object in some class M.
Example: a rational number, 3

4

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3, 4)

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

When are two fractions ‘the same’?
Are 2

5 and 4
10 the same thing? yes!

Note: Our representation set R may be redundant.
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Terminology and Notation

“Equal” can mean multiple things:
I Isomorphism, representing the same model.

Often a relatively computationally expensive to check.
(2, 5) ∼= (4, 10) (“isomorphic to”)

I Representational equality, the data structures are equal.
Usually straight-forward and cheap to check.
(2, 5) r= (2, 5) (“representationally equal to”)

I Alias, the names refer to the same mathematical object.
A = B
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Canonicalization

Given a representation G ∈ R find a new representation C(G), a
canonical form, such that:
I It represents the same model: C(G) ∼= G
I All canonicalized isomorphic representations are the same:
∀G ′ ∈ R,G ′ ∼= G : C(G ′) r= C(G)

How do we specify and implement canonicalization in practice?
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Representations
Besides the r= operation we need:
I A class of operations, Op, that do not change the model.
I A total order

r
< among (isomorphic) representations.

Fraction Example:
Op:
I Multiplying with an integer: (2, 5) · 2 = (2 · 2, 2 · 5) ∼= (2, 5)
I Dividing with a common factor: (4,10)

2 =
(
4
2 ,

10
2

)
∼= (4, 10)

I (and compositions of those operations)
r
<:
I Prefer both positive over both negative: (2, 5)

r
< (−2,−5)

I Prefer (neg., pos.) over (pos., neg.): (−2, 5)
r
< (2,−5)

I Prefer smaller (absolute) numbers (lexicographically):
(2, 5)

r
< (4, 10), (1, 2)

r
< (2, 3)
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Canonicalization
Given G ∈ R:
I Find an operation op ∈ Op that produces the

r
<-smallest

representation.
I Return that representation op(G) as the canonical form.

Fraction Example:
Given (a, b),
I Find f = GCD(|a|, |b|)
I If b < 0: let op = Div(f ) ◦Mul(-1)

else: let op = Div(f )
I Return op((a, b))

In Practice:
I Probably return op. The user can compute op(G) if needed.
I

r
< may be implicitly defined by the canonicalization algorithm.
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Example: Circular RNA (circRNA)

A

G

U
G C

A

G

U
GC

Representation: A sequence of symbols A, C, G, U.
Example: AGUGCAGUGC

Operations: Rotate(i), for i ∈ Z
Example: Rotate(2,AGUGCAGUGC) = UGCAGUGCAG

r= and
r
<: component-wise and lexicographic comparison

Canonicalization: find the lexicographically smallest rotation
(can be done in linear time)

Symmetry Discovery: op is a symmetry if op(G) r= G
Example: Rotate(5) is a symmetry of AGUGCAGUGC, because

Rotate(5,AGUGCAGUGC) = AGUGCAGUGC
r= AGUGCAGUGC

Rotate(0) is a trivial symmetry
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Example: Double Stranded RNA
Representation:
A pair of sequences of symbols A, C, G, U, of equal length.

Example: AGUGC
UCACG

Operations: Reverse ◦ Swap
Example: (Reverse ◦ Swap)

(
AGUGC
UCACG

)
= GCACU

CGUGA

r= and
r
<: component-wise and lexicographic comparison

Example: AGUGC
UCACG

r
< GCACU

CGUGA

Canonicalization: take the
r
<-smallest of the two possibilities
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Permutations
Permutation: a 1-to-1 map γ : S → S.
Usually S is the positions of a list {1, 2, . . . , n}.

Example:
Table/matrix notation:

i 1 2 3 4
γ(i) 3 4 1 2

Cycle notation:
(1 3)(2 4)

We use the notation iγ instead of γ(i).
So σ(γ(i)) will be (iγ)σ = iγσ.

Permuting a Set:
For a set X , we use Xγ to mean {xγ | x ∈ X}.

Example:
For γ = (1 3)(2 4) and X = {2, 3} we get
Xγ = {2γ , 3γ} = {4, 1}
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Graph Representation
G = (V ,E ) V = {1, 2, . . . , n}

Isomorphic graphs, different representations:
1

4
3

2
G1

2

1
3

4
G

1

4
2

3
G2

Adjacency matrix representation:
1 2 3 4

1 1
2 1 1
3 1 1
4 1 1 1

1 2 3 4
1 1 1 1
2 1
3 1 1
4 1 1

1 2 3 4
1 1
2 1 1
3 1 1
4 1 1 1

Adjacency list representation (with sorted neighbour lists):
1 : 4
2 : 3, 4
3 : 2, 4
4 : 1, 2, 3

1 : 2, 3, 4
2 : 1
3 : 1, 4
4 : 1, 3

1 : 4
2 : 3, 4
3 : 2, 4
4 : 1, 2, 3

Optional exercise: try permuting an adjacency list/matrix by hand.
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Graphs Canonicalization
Model: A graph G = (V ,E ).

Representation: An adjacency list/matrix which implicitly assigns
1, 2, . . . , n to V .

Operations: Permute(γ) for any permutation of 1, 2, . . . , n.
r= and

r
<: component-wise and lexicographic comparison

Computational Complexity: exp
(
O

(√
n log n

))
Brute-Force Algorithm:
1. Construct Gγ for all permutations γ ∈ Sn.
2. Select the “best” one (for example the

r
<-smallest).

Generally not feasible to check all n! permutations of n vertices.

[Babai and Luks, STOC, 1983]
[Babai, Handbook of Combinatorics, 1996]

13/22



Existing Tools for Canonicalization in Practice
Published Tools: nauty, Traces, Bliss (and Saucy and Conauto)
I All based on the idea of individualization-refinement.
I Different sets of heuristics and variations.
I Many more algorithm variations are possible.
I Which is the best? for a specific class of graphs?
I What if the graph has vertex and edge labels?
I What if those labels are “complicated”? (e.g., stereo-info)

GraphCanon: [Andersen and Merkle, ALENEX, 2018]

I A generic C++ library for canonization algorithms.
I Code: https://github.com/jakobandersen/graph_canon
I Visualizer:

https://jakobandersen.github.io/graph_canon_vis

[McKay, Congressus Numerantium, 1981] [McKay and Piperno, J. Symb. Comp.,
2014] [Junttila and Kaski, ALENEX, 2007] [Darga et al., DAC, 2008] [López-Presa
and Fernández Anta, SEA, 2009]
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Individualization-Refinement
Idea:
I We need an order of the vertices.
I In the beginning, we don’t know anything about that order.
I That is, we start with a set of vertices and must create a

sequence of vertices.
I We can decide the rules for the ordering.
I Use “easy” rules to introduce order gradually.

Example: Initially we have a set V = {1, 2, 3, 4}.
1

4
3

2
Can we define some (partial) order without looking at the indices?
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Individualization-Refinement Paradigm
Initially: all vertices are unordered (same colour).

1
2
3
4
5
6
7
8
9
10

1

2

3

4

5

6

7

8

9

10

[1 2 3 4 5 6 7 8 9 10]

1

2

3

4

5

6

7

8

9

10

[1 2 | 3 4 5 6 7 8 9 10]

1

2
7

8

9

10
3

4

5

6

[1 2 | 7 8 9 10 | 3 4 5 6]
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Individualization-Refinement Paradigm
Refine the ordering by propagation of “cheap” local information.
Example: sort and partition by degree (1D Weisfeiler-Leman).
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Individualization-Refinement Paradigm
Let this be the root of a search tree, and select a colour.
For each vertex of that colour;

create a child with this vertex given a unique new colour.

1
2
3
4
5
6
7
8
9
10

1

2
7

8

9

10
3

4

5

6

[1 2 | 7 8 9 10 | 3 4 5 6]

1

2
7

8

9

10
3

4

5

6

[1 | 2 | 7 8 9 10 | 3 4 5 6]

2

1

7

8

9

10
3

4

5

6

[2 | 1 | 7 8 9 10 | 3 4 5 6]
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Individualization-Refinement Paradigm

1

2
7

8

9

10

5

6
3

4

π(1) = [1 | 2 | 7 8 9 10 | 5 6 | 3 4]

1

2
7

8

9

10
3

4

5

6

π() = [1 2 | 7 8 9 10 | 3 4 5 6]

2

1

7

8

9

10
3

4

5

6

π(2) = [2 | 1 | 7 8 9 10 | 3 4 | 5 6]

1

2
7

10

8

9

6

5

4

3

π(1,7) = [1 | 2 | 7 | 10 | 8 | 9 | 6 | 5 | 4 | 3]

1

7 8 9 10

2

7 8 9 10

2

1

7

10

8

9

4

3
6

5

π(2,7) = [2 | 1 | 7 | 10 | 8 | 9 | 4 | 3 | 6 | 5]

1

2

8

9

7

10

5

6
3

4

π(1,8) = [1 | 2 | 8 | 9 | 7 | 10 | 5 | 6 | 3 | 4]

1
2
3
4
5
6
7
8
9
10

Colour order

1

2
9

8

10

7

6

5

3

4

π(1,9) = [1 | 2 | 9 | 8 | 10 | 7 | 6 | 5 | 3 | 4]

18/22



Labelled Graphs
Consider molecules, what about the atom types?

C 〈0〉

C
〈1〉

C 〈2〉

C 〈3〉

C
〈4〉

C〈5〉

O 〈6〉

H
〈7〉

H 〈8〉

H 〈9〉

H 〈10〉

H 〈11〉

H 〈12〉

H 〈13〉

H
〈14〉

Vertex labels: use them to make an initial partial order.
Edge labels: compare them as part of

r
<.
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Abstract Algorithm
I Construct the search tree.
I For each leaf, construct the permuted graph using the discrete

partition as a vertex permutation.
I For two such permuted graphs Gπ1 and Gπ2 ,

I if Gπ1
r
< Gπ2 , discard π2,

I if Gπ1 r= Gπ2 , yield π1π2 as automorphism, and
discard either π1 or π2.

I Return the permutation represented by the remaining leaf.
Pruning Techniques
I Use automorphisms to skip redundant subtrees.
I Use node invariants to remove subtrees

(possibly changing which leaves are ever constructed).
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Algorithm Variation
Categories
I Tree traversal
I Target cell selection
I Refinement
I Pruning with automorphisms
I Detection of implicit automorphisms
I Node invariants
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Final Notes
I Canonicalization is a general concept for representations of

models. Note just graphs.

I It is entirely a core Computer Science problem.
I It can be non-trivial to create a correct and good algorithm,
I so probably find a good library for it,
I but be very careful: there are unfortunately several bad

cheminformatics papers on this topic.
[Weininger et al., Algorithm for Generation of Unique SMILES Notation, 1988]
[Schneider et al., Get Your Atoms in Order — An Open-Source Implementation
of a Novel and Robust Molecular Canonicalization Algorithm, 2015]
Note: neither paper has a proof of correctness.
Rule of thumb: if the so-called algorithm has a “tie-breaking”
step, it’s probably wrong.
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