
Structure Searching

Problem: Identify a particular molecule and associated information
in a chemical database.

The solution boils down to solve the graph isomorphism problem.

Two graphs are isomorphic if there exists a one-to-one mapping
between the atoms, which preserves the connectivity of the graphs.

If the two graphs are the same the one-to-one mapping is called
automorphism.

Automorphic atoms are equivalent with respect to the
constitutional symmetry.

Graph theoretical algorithms for (sub)graph isomorphism are well
established but usually too slow for typical chemical databases.

A filtering step rapidly eliminates molecules that can not match.
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Primer: Graphs

G = (V ,E ) where ei = (vi , vj)

• A graph is a tupel of two sets, the vertex set and the edge set.

• The edge set members are tupels of vertex set members.

• Graphs preserve neighborhood relations.
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vertex set V = {1, 2, 3, 4, 5, 6, 7}
edge set E = {(1, 2), (2, 3), (1, 3), (3, 6), (4, 5), (5, 7)

(2, 1), (3, 2), (3, 1), (6, 3), (5, 4), (7, 5)}

Chemical graphs are undirected simple graphs, which are
loop-free and do not contain multiple edges.
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Representation of Graphs

The adjacency matrix A = A(G ) of graph G with N vertices is the
square N ×N symmatric matrix whose elements [A]ij are defined as

[A]ij =

�
1 if i �= j and eij ∈ E (G )

0 if i = j or eij /∈ E (G )




0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 0
0 0 0 0 1 0 0
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Algorithms for Chemical Graphs

The most common tasks in cheminformatics involve only three
classes of algorithms which operate on chemical graphs:

1 Canonical coding problem i.e. the generation of a unique
representation of a chemical compound.

2 Automorphism partitioning problem (= constitutional
symmetry problem) i.e. the detection of equivalent atoms and
bonds in a chemical compound.

3 Graph isomorphism problem i.e. the determination if two
connection tables represent the same chemical compound.
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Ullmann algorithm

• One of the most efficient subgraph isomorphism methods.

• Backtracking algorithm with relaxation.

• Operates on the adjacency matrix.

• Produces all matching matrices (= subgraph isomorphisms).

M · (M · H)T = Q

A matching matrix M fulfills the following conditions:

1 Each row contains just one element equal to “1”.

2 Each column contains no more than one element equal to “1”.
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Ullmann algorithm

1

2

3

4

5











0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0
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0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0





























0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0











Ullmann JR (1976), An Algorithm for Subgraph Isomorphism. J Assoc Comput Mach 23:31-42 |
DOI:10.1145/321921.321925.
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Exact Matching

Exact Matching Complexity

Graph Isomorphism : In NP, but unknown if P or NP complete.

Subgraph Isomorphism, Monomorphism, MCS... : NP complete.

There exists algorithms for special graphs with polynomial runtime.



Exact Matching
Tree-Search approach

Basic Idea

Iteratively expand partial match by adding new pairs of matched
nodes.

The pair is chosen using some necessary conditions.

Prune unfruitful search paths.

If no further vertex pairs may be added due to constraint, undo last
additions (backtracking)

Algorithm stops if match has been found or all matchings that satisfy
the constraints has been tried.



Exact Matching
Ullmann’s Algorithm [J.R. Ullmann 1976]

Tree-Search algorithm (Depth-Search-First)

Uses adjacency matrices and additional constraints for matching and
pruning.

Application for graph isomorphism, subgraph isomorphism and
monomorphism, also for MCS problem



Exact Matching
Ullmann’s Algorithm

Given: Two graphs GA(VA,EA) and GB(VB ,EB) and their adjacency
matrices: A and B

Idea: n = |Va|, m = |Vb|, n ×m permutation matrix M with
following form:

◮ M contains only ’0’ and ’1’
◮ Exact one ’1’ in each row
◮ Not more than one ’1’ in each column

Permutate adjacency matrix B by multiplying it with M, and compare
adjacency.



Exact Matching
Ullmann’s Algorithm

M × B : Move row j to row i ∀Mij = 1

(MB)T : Move column j to column i

M(MB)T : Move column j to column i and row j to row i
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Exact Matching
Ullmann’s Algorithm

M(MB)
T

=





1 0 0 0
0 0 1 0
0 1 0 0



 ×













1 0 0 0
0 0 1 0
0 1 0 0



 ×









0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

















T

=





1 0 0 0
0 0 1 0
0 1 0 0



 ×









0 0 1
1 1 0
0 0 1
0 0 1









=





0 0 1
0 0 1
1 1 0



 = C



Exact Matching
Ullmann’s Algorithm

Creating pairs of nodes by exchanging rows and columns (renaming).

Adjacency condition

Let C = M(MB)T ,
A is a (subgraph-) isomorphism iff

Aij = 1 ⇒ Cij = 1∀i , j

How do we get M?

monomorphism 



Exact Matching
Ullmann’s Algorithm

Build Startmatrix M0 by setting all values to 1 (allow all
permutations)
Set values to 0 for all M0

ij where deg(Bj ) < deg(Ai ) (remove
impossible permutations)

M0
ij =

�

1 if deg(Bj ) ≥ deg(Ai )
0 otherwise

,∀i , j

Generate systematically permutation matrices Md .



Exact Matching
Ullmann’s Algorithm
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Exact Matching
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Exact Matching
Ullmann’s Algorithm V2

Refinement Procedure:

For all neighbours in A there must be proper
neighbours in B.

Formally:

∀k(Aik = 1 ⇒ ∃p(MkpBpj = 1))

Set Md
ij = 0 where conditions are not complied.



Exact Matching
Tree-Search approaches

VF and VF2 algorithm

Application for isomorphism and subgraph isomorphism

VF algorithm defines a heuristic based on the analysis of the sets of
nodes adjacent to the ones already considered in the partial mapping.



Exact Matching
Group theory approach

McKay’s Nauty

Nauty - No automorphisms, yes?

Application for isomorphism only

It uses the property that the canonical labeling for isomorph graphs is
identical.

It constructs the automorphism group of each of the input graphs and
derives a canonical labeling



Structure Searching

Problem: Identify a particular molecule and associated information
in a chemical database.

The solution boils down to solve the graph isomorphism problem.

Two graphs are isomorphic if there exists a one-to-one mapping
between the atoms, which preserves the connectivity of the graphs.

If the two graphs are the same the one-to-one mapping is called
automorphism.

Automorphic atoms are equivalent with respect to the
constitutional symmetry.

Graph theoretical algorithms for (sub)graph isomorphism are well
established but usually too slow for typical chemical databases.

A filtering step rapidly eliminates molecules that can not match.
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Fragment Information

Fragment Code

0 0 0 1 0 0 1 0 1
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O

Hash Fingerprints

O

O
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OHO
O

O

0 0 1 0 1 0 11 1

*

• Bitstrings depend on the choice of the fragments.
• Bitstrings are ambiguous.
• Bitstrings can be compared and manipulated very rapidly.
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Pre-screening example

N
N
H

NO

NH
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1 1 0 1 0

0 1 1 11

0 1 1 01
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target B

target A
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Descriptor Center Connection Graphs (DCCG)
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• Reduced graph representation
(10 vertices 16 edges).

• Preserves topological
information.

• Biology-oriented fragment
description.

• Level of generalization can be
controlled.

• Good for pharmacophore based
virtual screening.

Avidon VV et al (1982), Structure-activity relationship oriented languages for chemical structure representation,
J Chem Inf Comput Sci, 22:207-214 | DOI:10.1021/ci00036a006
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Algorithms for Chemical Graphs

The most common tasks in cheminformatics involve only three
classes of algorithms which operate on chemical graphs:

1 Canonical coding problem i.e. the generation of a unique
representation of a chemical compound.

2 Automorphism partitioning problem (= constitutional
symmetry problem) i.e. the detection of equivalent atoms and
bonds in a chemical compound.

3 Graph isomorphism problem i.e. the determination if two
connection tables represent the same chemical compound.
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Canonical Numbering

A molecular graph
G = G (V ,E )

consists of a non-empty set V of vertices representing atoms and a
set E of edges representing chemical bonds.

A labeling Lb of a graph G composed of N vertices consist of a
one-to-one mapping

Lb : V (G ) → {1, 2, . . . ,N}

The integer Lb(v) ∈ {1, 2, . . . ,N} assigned to a vertex v ∈ V (G )
is called a label of the vertex v .

For a graph G with N vertices there exist N! permutation labelings.
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Graph Labeling

The tree representation of the 3! = 6 permutation labelings of
cyclopropane.

1

1 1

1

1 1

1

112 2

22

2 23

3

3 3

3

3

The tree of permutation labelings can be explored by breadth-first
or depth-first order.
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Constitutional Isomeres and Isomorphism

The empiric formula C3H6O can be expressed by the following nine
structural diagrams:

O

O O

O
O

O O

H

H

OH

OH

Generation of all structural isomeres from an empiric formula is an
important task in automatic structure elucidation.
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Constitutional Symmetry of Graphs

Consider two graphs

G = (V ,E ) and G � = (V �,E �) with |V | = |V �|

and a mapping m : V → V � which assigns each vertex v ∈ V a
vertex v � ∈ V � in such a way that if vi �= vj then m(vi ) �= m(vj).

The two graphs G and G � are isomorphic if there exists a mapping
m : V → V � which preserves the adjacency of vertices.

eij ∈ E with vk = m(vi ) and vl = m(vj) =⇒ ekl ∈ E �

An isomorphism of a graph with itself is called an automorphism
and can be represented by a permutation matrix P

P =

�
1 2 3 . . . i . . . N
p1 p2 p3 . . . pi . . . pN

�
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Automorphism group Aut(G )

The automorphism group Aut(G ) describes all symmetry
properties of a graph and satisfies the folowing conditions:

1 For any two permutations A,B ∈ Aut(G ) there exists a
unique element C = A⊗ B with C ∈ Aut(G ).

2 The operations respect the associative law:
A⊗B⊗C = A⊗ (B⊗C) = (A⊗B)⊗C∀A,B,C ∈ Aut(G ).

3 For every permutation A ∈ Aut(G ) there exists an inverse
permutation A−1 ∈ Aut(G ) such that
A⊗ A−1 = A−1 ⊗ A = E.

4 The set Aut(G ) contains a unique permutation E such that
A⊗ E = E⊗ A = A∀A ∈ Aut(G ). E is the identity
permutation.

An orbit is the set of all atoms that are transformed from one into
another by the action of all automorphisms from Aut(G ).
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The automorphism group of Isopropylcycloporan
1

2

34

5

6

E =

�
1 2 3 4 5 6
1 2 3 4 5 6

�

B =

�
1 2 3 4 5 6
1 2 3 4 6 5

�

P E A B C
P−1 E A B C

A =

�
1 2 3 4 5 6
2 1 3 4 5 6

�

C =

�
1 2 3 4 5 6
2 1 3 4 6 5

�

E A B C
E E A B C
A A E C B
B B C E A
C C B A E

Orbits: X1 = {1, 2},X2 = {3},X3 = {4},X4 = {5, 6}.
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The Morgan Algorithm

The extended connectivity (EC) algorithm efficiently partitions
atoms into equivalence classes.

1 Set the EC1 value of each atom to the value of its degree.

2 Determine the number of different EC1 v njalues, NECV1.

3 Set the ECn+1 value of each atom to the sum of the ECn

values of the adjacent atoms.

4 Determine NVECn+1.

5 If NVECn+1 > NVECn goto step (3).

6 The ECn values are the final ones.

Morgan HL, J Chem Doc 5:107-113, (1965)
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Canonical labeling of Ethylcyclopentane
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The Morgan algorithm reduces the search for a canonical labeling
of ethylcyclopentane from 7! = 5040 to only two labelings.
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Canonical Coding of Graphs

A code Cd(G , Lb) of a labeled graph G (Lb(v)) is a string obtained
from G by a set of rules.

A code is a complete representation of G (Lb(v)) because the
labeled graph can be reconstructed from the code Cd(G , Lb).

The code is not a structural invariant, because different labelings
of G usually give different codes.

The lexicographical/numerical relations between two strings induce
an ordering of the codes. (A minimal/maximal code exists).

For a given molecular graph the canonical code is unique. This
property of codes is used in graph isomorphism testing.

Heuristic approaches are used to reduce the number of permutation
labelings, that need to be searched to detect the canonical one.
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Substructure Searching

Problem: Identify all molecules containing a specific substructure.
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Fenoldopam Apomorphine Mefeclorazine Morphine

Olmidine

Graph theoretical methods for subgraph isomorphism can be used.

• These methods are usually too slow for large databases.
• Hence pre-screen database for possibly matching candidates.
• Ideally discard more than 99% of the database.
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(Sub)structure Search

Search strategy:

1 Eliminate molecules using the bitstring search.

2 Perform subgraph isomorphism search on remaining molecules.

The subgraph isomorphism search belongs to the class of
NP-complete problems i.e. the runtime of the algorithms scales in
the worst case exponentially with the number of nodes in the
graphs.

“Brute-force” approach:

1 Generate all possible ways to map the atoms from the query
molecule Q onto the host molecules H (from the database).

2 Foreach mapping check if all atom and bond types match.

Number of Mappings =
NH !

(NH − NQ)!
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Possibilities for Performance Improvements

OO

1

1

2

2

3

3

4

4

5 Nmaps =
5!

(5− 4)!
= 120

only two mappings are isomorphisms
(2, 4, 3, 1) and (4, 2, 3, 1).

1 Optimize hard and software technologies (e.g. faster
computers or parallel architecture).

2 Change heuristic such that partial matchings can be
recognized/rejected early during search.

3 Preprocess time consuming operations, which are independent
of query structure and store them with the target structure.
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Backtracking Algorithms

(0,0,0,0)

(3,0,0,0) (4,0,0,0)(2,0,0,0) (5,0,0,0)

(3,0,2,0) (3,0,4,0) (4,0,3,0) (4,0,5,0) (5,0,4,0)(2,0,3,0)

(2,4,3,0) (3,0,4,5) (4,2,3,0) (5,3,4,0)

(2,4,3,1) (4,2,3,1)

1 All mappings can be organized hierarchically.

2 Use neighbors of already mapped nodes to extend the partial
mappings.

Note: Unfruitful partial mappings are recognized relatively early.

Ray LC, Kirsch RA (1957), Finding Chemical Records by Digital Computers. Science 126:521-533.

Xu J (1996), GMA: A Generic Match Algorithm. J Chem Inf Comput Sci 36:25-34.
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Optimization of Backtracking Algorithm
Runtime complexity of the backtracking algorithm is

O(mH · bnQ )

1 Reduce mean value of branching factor
• Put more information into the node labels (e.g. neighborhood

information).
• Order in which alternatives are examined (e.g. pick unusual

heteroatoms with high degree first).

2 Node partitioning (similar to topological symmetry perception)
Class description Atoms from GQ Atoms from GH

C with 1 single bond 1,2 2, 5
C with 2 single bonds – 4
C with 3 single bonds 3 3
O with 1 single bond 4 1

Failure of isomorphism search is guaranteed:

• An atom from GQ does not have a candidate in GH .

• # of atoms in class i from GQ is larger than # of candidates
in the same class from GH .
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