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Horton's Algorithm

Horton, J. D. A polynomial-time algorithm to find a shortest cycle basis of
a graph. SIAM Journal of Computing 16 (1987), 359-366.
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Horton's Algorithm

Theorem

For every cycle in G which is element of an MCB of G, there exists for
every node v € G an edge {u,w} € G, such that

C = SP(u,v) + SP(w, v) + {u, w}

where SP(x,y) denotes the shortest path from node x to node y.
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Horton's Algorithm

Lemma 1

Let BB be a cycle basis of G and C € B with C = C; & C,. Then either
B\{C}U{CG} or B\ {C}U{G} is a cycle basis.
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Horton's Algorithm

Lemma 1

Let B be a cycle basis of G and C € B with C = C; & (. Then either
B\{C}U{CG} or B\ {C}U{G} is a cycle basis.

C=GaG

Proof.

Assume otherwise (none is a cycle basis?). Then there is a linear dependency in
B\ {C}U{C} aswell asin B\ {C}U{G}. Therefore C; as well as C, can be
expressed as a linear combination of B\ {C}. But C = C; & G, and thus C can
also be expressed as a linear combination of B\ {C}. This is a contradiction to
the fact that B is a basis (details Horton 1987). Ol

“case of “both are a cycle basis” omitted 5 /34



Horton's Algorithm

Lemma 2

Let B by a cycle basis of G. For every pair of nodes x,y € V and a path

P € G from x to y holds: Every cycle C € B containing x and y can be
replaced by a cycle C, that contains P.
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Horton's Algorithm
Lemma 2

Let B by a cycle basis of G. For every pair of nodes x,y € V and a path

P € G from x to y holds: Every cycle C € B containing x and y can be
replaced by a cycle C, that contains P.

Proof-:

Py

P>

It holds C = C; & G, and by Lemma 1 either B\ {C} U{G} or
B\ {C}U{G} is a cycle basis.
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Horton's Algorithm

Implications:

Let neither P; nor P, be shortest paths between x and y and let P be a
shortest path between x and y.

34



Horton's Algorithm

Implications:
Let neither P; nor P, be shortest paths between x and y and let P be a

shortest path between x and y.

= 1(C1) < I(C) and /(&) < I(C)

— every basis B containing C can be rewritten into a basis B’, which
contains either C; or G instead of C

= I(B') < I(B)

Therefore, if B is a MCB, then every cycle in B with nodes x and y also J

contains a shortest path from x to y.
10/34




Horton's Algorithm

Theorem

For every cycle in G which is element of an MCB of G, there exists for every node
v € G an edge {u,w} € G, such that

C = SP(u,v)+ SP(w, v) + {u, w}

where SP(x, y) denotes the shortest path from node x to node y.
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Horton's Algorithm

Theorem

For every cycle in G which is element of an MCB of G, there exists for every node
v € G an edge {u,w} € G, such that

C = SP(u,v)+ SP(w, v) + {u, w}

where SP(x, y) denotes the shortest path from node x to node y.

Proof:
v v2 Consider a cycle C and an arbitrary node v in C:
@ wlog: Let v =, vi,...,Vi—1,v; = v be the indices of the
nodes.

@ Let Qx be a path from v to v in direction of the indexing.

@ Let Py be a path from vi to v in direction of the indexing.
—> Py or Qx is a shortest path from v to v.

@ Let i be the largest k such that Qx is shortest path from v to v.
— Qi and P;;1 are a shortest path from v to v;.
= C=Qi®{vi,vis1} ® Pin1
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Horton's Algorithm for an MCB

Input: Graph G = (V,E)

Output: A Minimum Cycle Basis

H<+ 0

for ve V and {u,w} € E do
C™ = SP(u,v) + {u,w} + SP(w, v)
if C)" is simple then
| H<+—HU{CM™}

end
end
Sort the cycles in H increasingly: G, Gy, . ..
B* <0 ;i=1

while (|B*| < |E| — |V| + ¢(G)) do
if B*U{C} is linear independent then
| B* + B*U{G}
end
i++
end
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Horton's Algorithm

Runtime of Binary Gaussian elimination: O(k x |EJ)
@ (b)
o'e I
04. @ 04‘ O—®
Cq C, Cs
©
[1.2] [1.4] [23] [24] [34] [12] [14] [23] [24] [34]
¢ @ 1 0 1 0 C4 1 0 1 0
Cz 0 0 1 1 1 —>C 0 0 1 1 1
Cs (M 1 1 0 1 Cs 0 0 1 1 1
@
.2 14 231 [24] [34] 2] 4 23] 24 [34]
Cy 1 1 0 1 0 Ciq 1 0 1 0

C, 0 o @ 1 1 3G 0 o [ 1 1

Cs 0 o M 1 1 Cs 0 0 0 0 0
(©)

n2 M4 31 24 B4 20 4 231 24 B4
ci 1 1 0 1 0 Gy 1 1 0 1 0
Cz 0 0 1 1 1 —>C o0 0 1 1 1
Cs —o & © © ©
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Horton's Algorithm

Runtime:

@ Pre-Computation:

All-Pairs-Shortest Paths (e.g. Floyd-Warshall) O(|V|3)
@ Size of Horton set H e O(|V| x |E])
@ Sorting the Horton set O(|H|log|H|)
@ Independence check of one cycle:

One iteration of Gaussian elimination with |B*| = k O(|E| x k)

As k < |E| = [V[+]c(G) O(|E[?)
@ Maximal number of iterations of the while-loop: O(|V| x |EJ)
@ Overall runtime: o(|V| x |E]®)

Can be brought down to O(|V/| x |E|*), where O(n“) is the runtime of
matrix-matrix multiplication (known: w < 2.373).
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de Pina’s Algorithm

de Pina, J. Applications of Shortest Path Methods. PhD thesis, University
of Amsterdam, Netherlands, 1995.
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de Pina’s Algorithm

Let E be the set of edges not included in an (arbitrarily) chosen spanning

tree T.
E¢

e €10

&
€ e

€5 €5

C=Ci®Co&®&Csd Cs
Let C; be the cycle in T when edge e; is used (here: 1 < <5).

It holds (without proof): any cycle C in G can be written as a linear
combination of cycles {C;, Gy, ...}

T8t



de Pina’s Algorithm

Input: Edges ey, ..., ey not included in an arbitrary spanning tree of G

Output: A Minimum Cycle Basis of G

forj=1,...,N do

| 5= {e}

end

for k=1,...,N do

Cy := shortest cycle in G with (Cy, Sk) =1

for j=k+1,...,Ndo
if <Ck75j> =1 then

‘ Sj = Sj @ Sk
end

end

end
{Cl,... 9 CN} isa MCB
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de Pina’s Algorithm

An arbitrarily chosen spanning tree. The edges {e1,...,es} are not in the
spanning tree.
Si=¢ (i=1,...,5)
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de Pina’s Algorithm (k = 1)

51 = {61}

S2 =5 ® 5 = {e1, &}
S53: =535 = {el, 63}
54 = 54 = {64}
55 = 55 = {65}

The shortest cycle C; containing an odd number of edges from S;
(equivalent: (Cy,S1) = 1)
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de Pina’s Algorithm (k = 2)

S = {e1, e}

S3:=S3 = {e1, e3}
Si:=5,© S ={e1, e, e4}
Ss =S5 = {es}

The shortest cycle G, containing an odd number of edges from Sy
(equivalent: (G, So) = 1)
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de Pina’s Algorithm (k = 3)

S3={e1, e3}
Ss =54 ={e1, e, e}
55 = 55 = {65}

The shortest cycle C3 containing an odd number of edges from S3
(equivalent: (Cz,S3) =1)



de Pina’s Algorithm (k = 4)

Sy = {e1, e, e}
55 = 55 = {65}

The shortest cycle C4 containing an odd number of edges from S,
(equivalent: (Ca, S4) = 1)
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de Pina’s Algorithm (k = b)

Ss ={es}

The shortest cycle Cs containing an odd number of edges from Ss
(equivalent: (Gs, Ss) = 1)
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de Pina’s Algorithm

@ Invariant of the second outer loop:
V1§i<j§N:<C,',5j>:0

@ Or: the updating of the sets S; with j > i is nothing more than
maintaining a basis {Si;1,..., S|y} of the subspace orthogonal to
{C,..., G}

@ Can be used to show correctness.
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de Pina’s Algorithm

Remember Horton's overall runtime: o(|V| x |E®)
Runtime (without details):
e Finding shortest cycle per phase O(|V| x (|E| + |V|log|V1]))
e Update sets per phase O(|E|?)
@ Number of phases O(|E|)
o Overall runtime O(|E|® + |E]? x |V|+ |E| x |[V[?log |V])
@ Can be improved to O(|E|? x |V| + |E| x |[V|?log|V])
Currently the best known (de Pina/Horton hybrid)®: o) (E;T\‘/“/l

1 Amaldi, Edoardo; luliano, Claudio; Rizzi, Romeo (2010), " Efficient deterministic algorithms for finding a minimum cycle basis

in undirected graphs”, doi:10.1007/978-3-642-13036-6_30
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MCB Applications

Besides characterization of molecules: Genus Determination®:

non-smooth wedge-torus
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Used for surface reconstruction if the sample is “dense enough”.

More applications: see e.g.
http://en.wikipedia.org/wiki/Cycle_basis#Applications

1 Gotsman, Craig; Kaligosi, Kanela; Mehlhorn, Kurt; Michail, Dimitrios; Pyrga, Evangelia (2007), Cycle bases of graphs and

sampled manifolds, Computer Aided Geometric Design 24 (8-9): 464480, doi:10.1016/j.cagd.2006.07.001
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http://en.wikipedia.org/wiki/Cycle_basis#Applications

MCB Applications

Graph invariants in molecular graphs.

-
| | PN
T/C\T/C\T T C/ T
C\l C
N N C//‘C:CC7
G Gy

o Left: MCB has three hexagons.
Right: Three of the four visible hexagons make up the forth, they are
“interchangeable”.

@ Define “interchangability”-classes

o Left: has three ~¢ equivalence classes of relative rank 1
Right: has one ~¢ equivalence classes of relative rank 3

@ Use these equivalence classes to characterize the ring system of a
molecule by a unique molecular descriptor

e MCB algorithms allow to do this in polynomial time
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MCB Applications - Molecular Graph Invariant

Interchangeability classes ~:

Lemma

Let C, C’ be two relevant cycles of weight k. Then C ~, C’ if and only if

there is a representation C = C' ® @p.7 D, where {C"} UZ is a (linearly)

independent subset of the relevant cycles of weight smaller than or equal
to K.

Berger, Franziska; Gritzmann, Peter; de Vries, Sven (2009), Minimum cycle bases and

their applications, Algorithmics of Large and Complex Networks, Lecture Notes in
Computer Science 5515, pp. 3449
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MCB Applications - Molecular Graph Invariant
The relative rank |B N W*| of an equivalence class for ~:

Lemma

Let k > 0 be the weight of some relevant cycle, let B, B’ be two different

minimum cycle bases and let W* be an equivalence class for ~,. Then
|IBN WE| =B n WE|.

This can be computed in polynomial time, namely O(|E|* x |V]).
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MCB Applications - Molecular Graph Invariant

The ordered vector 3(G) containing the relative ranks of ~, equivalence
classes is a graph invariant.
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MCB Applications - Molecular Graph Invariant

More precise graph invariant: Encode the information gained from a
minimum cycle basis and the relative ranks of the interchangeability
classes within one vector w(G):

Vertical lines separate the entries in w(G) according to the ~, equivalence
classes. The relative rank of each class corresponds to the number of
entries between two vertical lines, sorted by increasing rank. A subscript e
means that the corresponding equivalence class has cardinality 1.
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MCB Applications - Molecular Graph Invariant
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MCB Applications - Molecular Graph Invariant
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