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Horton’s Algorithm

Horton, J. D. A polynomial-time algorithm to find a shortest cycle basis of
a graph. SIAM Journal of Computing 16 (1987), 359–366.
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Horton’s Algorithm

Theorem

For every cycle in G which is element of an MCB of G , there exists for
every node v ∈ G an edge {u,w} ∈ G , such that

C = SP(u, v) + SP(w , v) + {u,w}

where SP(x , y) denotes the shortest path from node x to node y .
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Horton’s Algorithm

Lemma 1

Let B be a cycle basis of G and C ∈ B with C = C1 ⊕ C2. Then either
B \ {C} ∪ {C1} or B \ {C} ∪ {C2} is a cycle basis.

C = C1 ⊕ C2

Proof.

Assume otherwise (none is a cycle basisa). Then there is a linear dependency in

B \ {C} ∪ {C1} as well as in B \ {C} ∪ {C2}. Therefore C1 as well as C2 can be

expressed as a linear combination of B \ {C}. But C = C1 ⊕ C2, and thus C can

also be expressed as a linear combination of B \ {C}. This is a contradiction to

the fact that B is a basis (details Horton 1987).

acase of “both are a cycle basis” omitted
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Horton’s Algorithm

Lemma 2

Let B by a cycle basis of G . For every pair of nodes x , y ∈ V and a path
P ∈ G from x to y holds: Every cycle C ∈ B containing x and y can be
replaced by a cycle C , that contains P.

Proof:

It holds C = C1 ⊕ C2 and by Lemma 1 either B \ {C} ∪ {C1} or
B \ {C} ∪ {C2} is a cycle basis.
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Horton’s Algorithm

Implications:
Let neither P1 nor P2 be shortest paths between x and y and let P be a
shortest path between x and y .

=⇒ l(C1) < l(C ) and l(C2) < l(C )
=⇒ every basis B containing C can be rewritten into a basis B′, which

contains either C1 or C2 instead of C
=⇒ l(B′) < l(B)

Therefore, if B is a MCB, then every cycle in B with nodes x and y also
contains a shortest path from x to y .
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Horton’s Algorithm

Theorem
For every cycle in G which is element of an MCB of G , there exists for every node
v ∈ G an edge {u,w} ∈ G , such that

C = SP(u, v) + SP(w , v) + {u,w}

where SP(x , y) denotes the shortest path from node x to node y .

Proof:

Consider a cycle C and an arbitrary node v in C :

wlog: Let v = v0, v1, . . . , vl−1, vl = v be the indices of the
nodes.

Let Qk be a path from v to vk in direction of the indexing.

Let Pk be a path from vk to v in direction of the indexing.

=⇒ Pk or Qk is a shortest path from v to vk .

Let i be the largest k such that Qk is shortest path from v to vk .

=⇒ Qi and Pi+1 are a shortest path from v to vi .

=⇒ C = Qi ⊕ {vi , vi+1} ⊕ Pi+1
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Horton’s Algorithm for an MCB

Input: Graph G = (V ,E )
Output: A Minimum Cycle Basis
H ← ∅
for v ∈ V and {u,w} ∈ E do

Cuw
v := SP(u, v) + {u,w}+ SP(w , v)

if Cuw
v is simple then
H ← H∪ {Cuw

v }
end

end
Sort the cycles in H increasingly: C1,C2, . . .
B∗ ← ∅ ; i:=1
while (|B∗| < |E | − |V |+ c(G )) do

if B∗ ∪ {Ci} is linear independent then
B∗ ← B∗ ∪ {Ci}

end
i++

end
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Horton’s Algorithm

Runtime of Binary Gaussian elimination: O(k × |E |)
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Horton’s Algorithm

Runtime:

Pre-Computation:
All-Pairs-Shortest Paths (e.g. Floyd-Warshall) O(|V |3)

Size of Horton set H ∈ O(|V | × |E |)
Sorting the Horton set O(|H| log |H|)
Independence check of one cycle:
One iteration of Gaussian elimination with |B∗| = k O(|E | × k)
As k ≤ |E | − |V |+ |c(G )| O(|E |2)

Maximal number of iterations of the while-loop: O(|V | × |E |)
Overall runtime: O(|V | × |E |3)

Can be brought down to O(|V | × |E |ω), where O(nω) is the runtime of
matrix-matrix multiplication (known: ω ≤ 2.373).
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de Pina’s Algorithm

de Pina, J. Applications of Shortest Path Methods. PhD thesis, University
of Amsterdam, Netherlands, 1995.
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de Pina’s Algorithm
Let E be the set of edges not included in an (arbitrarily) chosen spanning
tree T .

Let Ci be the cycle in T when edge ei is used (here: 1 ≤ i ≤ 5).

It holds (without proof): any cycle C in G can be written as a linear
combination of cycles {C1,C2, . . .}
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de Pina’s Algorithm

Input: Edges e1, . . . , eN not included in an arbitrary spanning tree of G
Output: A Minimum Cycle Basis of G
for j = 1, . . . ,N do

Sj := {ej}
end
for k = 1, . . . ,N do

Ck := shortest cycle in G with 〈Ck ,Sk〉 = 1
for j = k + 1, . . . ,N do

if 〈Ck , Sj〉 = 1 then
Sj := Sj ⊕ Sk

end

end

end
{C1, . . . ,CN} is a MCB
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de Pina’s Algorithm

An arbitrarily chosen spanning tree. The edges {e1, . . . , e5} are not in the
spanning tree.
Si := ei (i = 1, . . . , 5)
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de Pina’s Algorithm (k = 1)

S1 = {e1}

S2 := S2 ⊕ S1 = {e1, e2}
S3 := S3 ⊕ S1 = {e1, e3}
S4 := S4 = {e4}
S5 := S5 = {e5}

The shortest cycle C1 containing an odd number of edges from S1

(equivalent: 〈C1, S1〉 = 1)
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de Pina’s Algorithm (k = 2)

S2 = {e1, e2}

S3 := S3 = {e1, e3}
S4 := S4 ⊕ S2 = {e1, e2, e4}
S5 := S5 = {e5}

The shortest cycle C2 containing an odd number of edges from S2

(equivalent: 〈C2, S2〉 = 1)
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de Pina’s Algorithm (k = 3)

S3 = {e1, e3}

S4 := S4 = {e1, e2, e4}
S5 := S5 = {e5}

The shortest cycle C3 containing an odd number of edges from S3

(equivalent: 〈C3, S3〉 = 1)
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de Pina’s Algorithm (k = 4)

S4 = {e1, e2, e4}

S5 := S5 = {e5}

The shortest cycle C4 containing an odd number of edges from S4

(equivalent: 〈C4, S4〉 = 1)
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de Pina’s Algorithm (k = 5)

S5 = {e5}

The shortest cycle C5 containing an odd number of edges from S5

(equivalent: 〈C5, S5〉 = 1)
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de Pina’s Algorithm

Invariant of the second outer loop:

∀1 ≤ i < j ≤ N : 〈Ci , Sj〉 = 0

Or: the updating of the sets Sj with j > i is nothing more than
maintaining a basis {Si+1, . . . ,S|N|} of the subspace orthogonal to
{C1, . . . ,Ci}.

Can be used to show correctness.
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de Pina’s Algorithm

Remember Horton’s overall runtime: O(|V | × |E |3)

Runtime (without details):

Finding shortest cycle per phase O(|V | × (|E |+ |V |log |V |))

Update sets per phase O(|E |2)

Number of phases O(|E |)
Overall runtime O(|E |3 + |E |2 × |V |+ |E | × |V |2 log |V |)
Can be improved to O(|E |2 × |V |+ |E | × |V |2 log |V |)

Currently the best known (de Pina/Horton hybrid)1: O
(
|E |2×|V |

log |V |

)
1 Amaldi, Edoardo; Iuliano, Claudio; Rizzi, Romeo (2010), ”Efficient deterministic algorithms for finding a minimum cycle basis

in undirected graphs”, doi:10.1007/978-3-642-13036-6 30
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MCB Applications
Besides characterization of molecules: Genus Determination1:

Used for surface reconstruction if the sample is “dense enough”.
More applications: see e.g.
http://en.wikipedia.org/wiki/Cycle_basis#Applications
1 Gotsman, Craig; Kaligosi, Kanela; Mehlhorn, Kurt; Michail, Dimitrios; Pyrga, Evangelia (2007), Cycle bases of graphs and

sampled manifolds, Computer Aided Geometric Design 24 (8-9): 464480, doi:10.1016/j.cagd.2006.07.001
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MCB Applications
Graph invariants in molecular graphs.

Left: MCB has three hexagons.
Right: Three of the four visible hexagons make up the forth, they are
“interchangeable”.

Define “interchangability”-classes

Left: has three ∼6 equivalence classes of relative rank 1
Right: has one ∼6 equivalence classes of relative rank 3

Use these equivalence classes to characterize the ring system of a
molecule by a unique molecular descriptor

MCB algorithms allow to do this in polynomial time
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MCB Applications - Molecular Graph Invariant
Interchangeability classes ∼κ:

Lemma

Let C , C ′ be two relevant cycles of weight κ. Then C ∼κ C ′ if and only if
there is a representation C = C ′ ⊕

⊕
D∈I D, where {C ′} ∪ I is a (linearly)

independent subset of the relevant cycles of weight smaller than or equal
to κ.

Berger, Franziska; Gritzmann, Peter; de Vries, Sven (2009), Minimum cycle bases and

their applications, Algorithmics of Large and Complex Networks, Lecture Notes in

Computer Science 5515, pp. 3449
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MCB Applications - Molecular Graph Invariant

The relative rank |B ∩W κ| of an equivalence class for ∼κ:

Lemma

Let κ > 0 be the weight of some relevant cycle, let B,B′ be two different
minimum cycle bases and let W κ be an equivalence class for ∼κ. Then
|B ∩W κ| = |B′ ∩W κ|.

This can be computed in polynomial time, namely O(|E |4 × |V |).
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MCB Applications - Molecular Graph Invariant

The ordered vector β(G ) containing the relative ranks of ∼κ equivalence
classes is a graph invariant.
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MCB Applications - Molecular Graph Invariant
More precise graph invariant: Encode the information gained from a
minimum cycle basis and the relative ranks of the interchangeability
classes within one vector w(G ):

Vertical lines separate the entries in w(G ) according to the ∼κ equivalence
classes. The relative rank of each class corresponds to the number of
entries between two vertical lines, sorted by increasing rank. A subscript e
means that the corresponding equivalence class has cardinality 1.
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MCB Applications - Molecular Graph Invariant
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MCB Applications - Molecular Graph Invariant
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