#### DM840 Algorithms in Cheminformatics:

Minimum (weight) Cycle Basis — Two Polynomial Time Algorithms

Daniel Merkle

Week 39/40, 2022

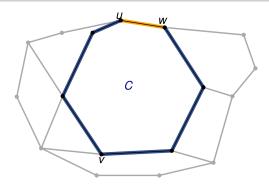
Horton, J. D. A polynomial-time algorithm to find a shortest cycle basis of a graph. *SIAM Journal of Computing* 16 (1987), 359–366.

#### Theorem

For every cycle in G which is element of an MCB of G, there exists for every node  $v \in G$  an edge  $\{u, w\} \in G$ , such that

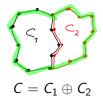
$$C = SP(u, v) + SP(w, v) + \{u, w\}$$

where SP(x, y) denotes the shortest path from node x to node y.



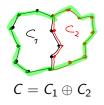
Lemma 1

Let  $\mathcal{B}$  be a cycle basis of G and  $C \in \mathcal{B}$  with  $C = C_1 \oplus C_2$ . Then either  $\mathcal{B} \setminus \{C\} \cup \{C_1\}$  or  $\mathcal{B} \setminus \{C\} \cup \{C_2\}$  is a cycle basis.



Lemma 1

Let  $\mathcal{B}$  be a cycle basis of G and  $C \in \mathcal{B}$  with  $C = C_1 \oplus C_2$ . Then either  $\mathcal{B} \setminus \{C\} \cup \{C_1\}$  or  $\mathcal{B} \setminus \{C\} \cup \{C_2\}$  is a cycle basis.



#### Proof.

Assume otherwise (none is a cycle basis<sup>a</sup>). Then there is a linear dependency in  $\mathcal{B} \setminus \{C\} \cup \{C_1\}$  as well as in  $\mathcal{B} \setminus \{C\} \cup \{C_2\}$ . Therefore  $C_1$  as well as  $C_2$  can be expressed as a linear combination of  $\mathcal{B} \setminus \{C\}$ . But  $C = C_1 \oplus C_2$ , and thus C can also be expressed as a linear combination of  $\mathcal{B} \setminus \{C\}$ . This is a contradiction to the fact that  $\mathcal{B}$  is a basis (details Horton 1987).

acase of "both are a cycle basis" omitted

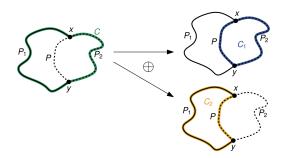
Lemma 2

Let  $\mathcal{B}$  by a cycle basis of G. For every pair of nodes  $x, y \in V$  and a path  $P \in G$  from x to y holds: Every cycle  $C \in \mathcal{B}$  containing x and y can be replaced by a cycle C, that contains P.

Lemma 2

Let  $\mathcal{B}$  by a cycle basis of G. For every pair of nodes  $x, y \in V$  and a path  $P \in G$  from x to y holds: Every cycle  $C \in \mathcal{B}$  containing x and y can be replaced by a cycle C, that contains P.

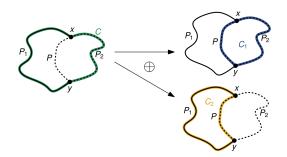
Proof:



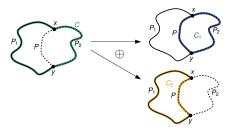
Lemma 2

Let  $\mathcal{B}$  by a cycle basis of G. For every pair of nodes  $x, y \in V$  and a path  $P \in G$  from x to y holds: Every cycle  $C \in \mathcal{B}$  containing x and y can be replaced by a cycle C, that contains P.

Proof:

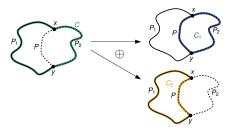


It holds  $C = C_1 \oplus C_2$  and by Lemma 1 either  $\mathcal{B} \setminus \{C\} \cup \{C_1\}$  or  $\mathcal{B} \setminus \{C\} \cup \{C_2\}$  is a cycle basis.



#### Implications:

Let neither  $P_1$  nor  $P_2$  be shortest paths between x and y and let P be a shortest path between x and y.



Implications:

Let neither  $P_1$  nor  $P_2$  be shortest paths between x and y and let P be a shortest path between x and y.

- $\implies$   $I(C_1) < I(C)$  and  $I(C_2) < I(C)$
- $\implies$  every basis  $\mathcal{B}$  containing C can be rewritten into a basis  $\mathcal{B}'$ , which contains either  $C_1$  or  $C_2$  instead of C
- $\implies I(\mathcal{B}') < I(\mathcal{B})$

Therefore, if  $\mathcal{B}$  is a MCB, then every cycle in  $\mathcal{B}$  with nodes x and y also contains a shortest path from x to y.

#### Theorem

For every cycle in *G* which is element of an MCB of *G*, there exists for every node  $v \in G$  an edge  $\{u, w\} \in G$ , such that

$$C = SP(u, v) + SP(w, v) + \{u, w\}$$

where SP(x, y) denotes the shortest path from node x to node y.

#### Theorem

For every cycle in *G* which is element of an MCB of *G*, there exists for every node  $v \in G$  an edge  $\{u, w\} \in G$ , such that

$$C = SP(u, v) + SP(w, v) + \{u, w\}$$

where SP(x, y) denotes the shortest path from node x to node y.

Proof:



Consider a cycle C and an arbitrary node v in C:

- wlog: Let  $v = v_0, v_1, \ldots, v_{l-1}, v_l = v$  be the indices of the nodes.
- Let  $Q_k$  be a path from v to  $v_k$  in direction of the indexing.
- Let P<sub>k</sub> be a path from v<sub>k</sub> to v in direction of the indexing.
   ⇒ P<sub>k</sub> or Q<sub>k</sub> is a shortest path from v to v<sub>k</sub>.
- Let *i* be the largest *k* such that Q<sub>k</sub> is shortest path from v to v<sub>k</sub>.
   ⇒ Q<sub>i</sub> and P<sub>i+1</sub> are a shortest path from v to v<sub>i</sub>.
   ⇒ C = Q<sub>i</sub> ⊕ {v<sub>i</sub>, v<sub>i+1</sub>} ⊕ P<sub>i+1</sub>

#### Horton's Algorithm for an MCB

```
Input: Graph G = (V, E)

Output: A Minimum Cycle Basis

\mathcal{H} \leftarrow \emptyset

for v \in V and \{u, w\} \in E do

\begin{vmatrix} C_v^{uw} := SP(u, v) + \{u, w\} + SP(w, v) \\ \text{if } C_v^{uw} \text{ is simple then} \\ \mid \mathcal{H} \leftarrow \mathcal{H} \cup \{C_v^{uw}\} \\ \text{end} \end{vmatrix}
```

#### end

```
Sort the cycles in \mathcal{H} increasingly: C_1, C_2, ...

\mathcal{B}^* \leftarrow \emptyset; i:=1

while (|\mathcal{B}^*| < |\mathcal{E}| - |\mathcal{V}| + c(\mathcal{G})) do

| if \mathcal{B}^* \cup \{C_i\} is linear independent then

| \mathcal{B}^* \leftarrow \mathcal{B}^* \cup \{C_i\}

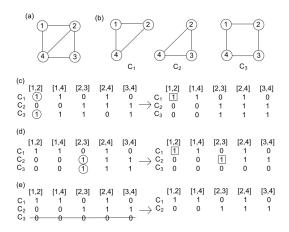
end

i++

end
```

Runtime of Binary Gaussian elimination:

 $O(k \times |E|)$ 

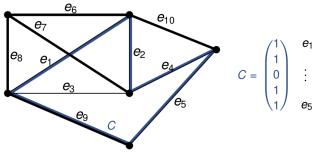


| Runtime:                                                                                                                                                     |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| <ul> <li>Pre-Computation:<br/>All-Pairs-Shortest Paths (e.g. Floyd-Warshall)</li> </ul>                                                                      | $O( V ^3)$                          |
| • Size of Horton set                                                                                                                                         | $\mathcal{H} \in O( V  	imes  E )$  |
| <ul> <li>Sorting the Horton set</li> </ul>                                                                                                                   | $O( \mathcal{H} \log \mathcal{H} )$ |
| <ul> <li>Independence check of <i>one</i> cycle:<br/>One iteration of Gaussian elimination with  B<sup>*</sup>  = k<br/>As k ≤  E  -  V  +  c(G) </li> </ul> | $O( E  	imes k) \ O( E ^2)$         |
| • Maximal number of iterations of the while-loop:                                                                                                            | O( V  	imes  E )                    |
| • Overall runtime:                                                                                                                                           | $O( V  	imes  E ^3)$                |

Can be brought down to  $O(|V| \times |E|^{\omega})$ , where  $O(n^{\omega})$  is the runtime of matrix-matrix multiplication (known:  $\omega \leq 2.373$ ).

de Pina, J. *Applications of Shortest Path Methods*. PhD thesis, University of Amsterdam, Netherlands, 1995.

Let *E* be the set of edges not included in an (arbitrarily) chosen spanning tree T.

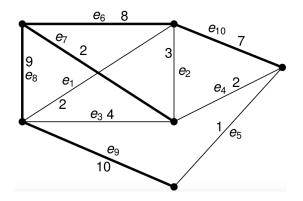


#### $C=C_1\oplus C_2\oplus C_4\oplus C_5$

Let  $C_i$  be the cycle in T when edge  $e_i$  is used (here:  $1 \le i \le 5$ ).

It holds (without proof): any cycle C in G can be written as a linear combination of cycles  $\{C_1, C_2, \ldots\}$ 

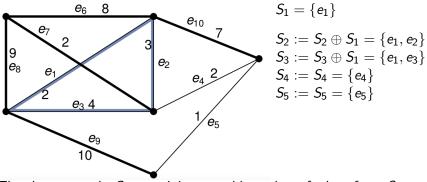
**Input:** Edges  $e_1, \ldots, e_N$  not included in an arbitrary spanning tree of G **Output:** A Minimum Cycle Basis of G for i = 1, ..., N do  $S_i := \{e_i\}$ end for k = 1, ..., N do  $C_k$  := shortest cycle in G with  $\langle C_k, S_k \rangle = 1$ for j = k + 1, ..., N do if  $\langle C_k, S_i \rangle = 1$  then  $S_i := S_i \oplus S_k$ end end end  $\{C_1,\ldots,C_N\}$  is a MCB



An arbitrarily chosen spanning tree. The edges  $\{e_1, \ldots, e_5\}$  are not in the spanning tree.

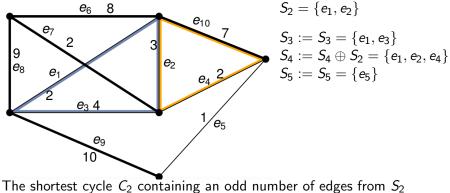
$$S_i := e_i \quad (i = 1, \ldots, 5)$$

de Pina's Algorithm (k = 1)



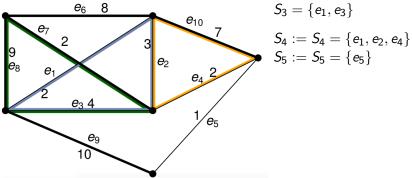
The shortest cycle  $C_1$  containing an odd number of edges from  $S_1$  (equivalent:  $\langle C_1, S_1 \rangle = 1$ )

de Pina's Algorithm (k = 2)



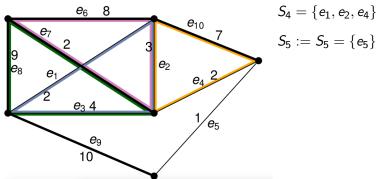
The shortest cycle  $C_2$  containing an odd number of edges from  $S_2$  (equivalent:  $\langle C_2, S_2 \rangle = 1$ )

de Pina's Algorithm (k = 3)



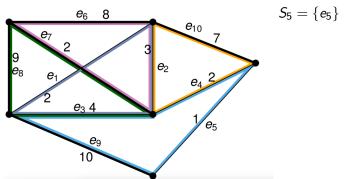
The shortest cycle  $C_3$  containing an odd number of edges from  $S_3$  (equivalent:  $\langle C_3, S_3 \rangle = 1$ )

de Pina's Algorithm (k = 4)



The shortest cycle  $C_4$  containing an odd number of edges from  $S_4$  (equivalent:  $\langle C_4, S_4 \rangle = 1$ )

de Pina's Algorithm (k = 5)



The shortest cycle  $C_5$  containing an odd number of edges from  $S_5$  (equivalent:  $\langle C_5, S_5 \rangle = 1$ )

• Invariant of the second outer loop:

$$\forall 1 \leq i < j \leq N : \langle C_i, S_j \rangle = 0$$

• Or: the updating of the sets  $S_j$  with j > i is nothing more than maintaining a basis  $\{S_{i+1}, \ldots, S_{|N|}\}$  of the subspace orthogonal to  $\{C_1, \ldots, C_i\}$ .

• Can be used to show correctness.

Remember Horton's overall runtime:

 $O(|V| \times |E|^3)$ 

#### Runtime (without details):

| <ul> <li>Finding shortest cycle per p</li> </ul> | hase $O( V  \times ( E  +  V  \log  V ))$                 |
|--------------------------------------------------|-----------------------------------------------------------|
| <ul> <li>Update sets per phase</li> </ul>        | $O( E ^2)$                                                |
| <ul> <li>Number of phases</li> </ul>             | O( E )                                                    |
| <ul> <li>Overall runtime</li> </ul>              | $O( E ^3 +  E ^2 \times  V  +  E  \times  V ^2 \log  V )$ |
| • Can be improved to                             | $O( E ^2 	imes  V  +  E  	imes  V ^2 \log  V )$           |
|                                                  |                                                           |

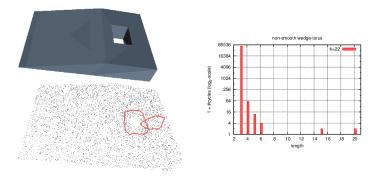
Currently the best known (de Pina/Horton hybrid)<sup>1</sup>:

 $O\left(rac{|E|^2 imes |V|}{\log |V|}
ight)$ 

<sup>1</sup> Amaldi, Edoardo; Iuliano, Claudio; Rizzi, Romeo (2010), "Efficient deterministic algorithms for finding a minimum cycle basis in undirected graphs", doi:10.1007/978-3-642-13036-6\_30

# MCB Applications

Besides characterization of molecules: *Genus Determination*<sup>1</sup>:



Used for surface reconstruction if the sample is "dense enough". More applications: see e.g. http://en.wikipedia.org/wiki/Cycle\_basis#Applications

<sup>1</sup> Gotsman, Craig; Kaligosi, Kanela; Mehlhorn, Kurt; Michail, Dimitrios; Pyrga, Evangelia (2007), *Cycle bases of graphs and sampled manifolds*, Computer Aided Geometric Design **24** (8-9): 464480, doi:10.1016/j.cagd.2006.07.001

# MCB Applications

Graph invariants in molecular graphs.



• Left: MCB has three hexagons.

Right: Three of the four visible hexagons make up the forth, they are "interchangeable".

- Define "interchangability"-classes
- Left: has three  $\sim_6$  equivalence classes of relative rank 1 Right: has one  $\sim_6$  equivalence classes of relative rank 3
- Use these equivalence classes to characterize the ring system of a molecule by a unique molecular descriptor
- MCB algorithms allow to do this in polynomial time

Interchangeability classes  $\sim_{\kappa}$ :

#### Lemma

Let C, C' be two relevant cycles of weight  $\kappa$ . Then  $C \sim_{\kappa} C'$  if and only if there is a representation  $C = C' \oplus \bigoplus_{D \in \mathcal{I}} D$ , where  $\{C'\} \cup \mathcal{I}$  is a (linearly) independent subset of the relevant cycles of weight smaller than or equal to  $\kappa$ .

Berger, Franziska; Gritzmann, Peter; de Vries, Sven (2009), *Minimum cycle bases and their applications*, Algorithmics of Large and Complex Networks, Lecture Notes in Computer Science 5515, pp. 3449

The *relative rank*  $|\mathcal{B} \cap W^{\kappa}|$  of an equivalence class for  $\sim_{\kappa}$ :

#### Lemma

Let  $\kappa > 0$  be the weight of some relevant cycle, let  $\mathcal{B}, \mathcal{B}'$  be two different minimum cycle bases and let  $W^{\kappa}$  be an equivalence class for  $\sim_{\kappa}$ . Then  $|\mathcal{B} \cap W^{\kappa}| = |\mathcal{B}' \cap W^{\kappa}|$ .

This can be computed in polynomial time, namely  $O(|E|^4 \times |V|)$ .

The ordered vector  $\beta(G)$  containing the relative ranks of  $\sim_{\kappa}$  equivalence classes is a graph invariant.

More precise graph invariant: Encode the information gained from a minimum cycle basis and the relative ranks of the interchangeability classes within one vector w(G):

Vertical lines separate the entries in w(G) according to the  $\sim_{\kappa}$  equivalence classes. The relative rank of each class corresponds to the number of entries between two vertical lines, sorted by increasing rank. A subscript *e* means that the corresponding equivalence class has cardinality 1.

