Ring Perception

Rings have profound influence on molecular properties:
(1) small rings introduce strain into a molecule.
(2) aromatic rings change physico-chemical properties.
(3) rings present particular problemes in synthesis.

Methods for Ring Perception

(1) graph-theory based methods.

- depth-first search: to find all cycles.
- breadth-first search: fast for smallest cycles.
(2) linear algebra based methods.
- manipulation of incidence or adjacency matrix.
- fundamental cycle basis.

Pre-processing of molecular graph:
(1) Iteratively remove all nodes with degree 1 (resulting in the ring skeleton).

(2) Merge ring nodes of degree 2 with corresponding neighbores (resulting in basic graph with fewer nodes).

Facts on Cycles

The minimal number of cycles is given by the nullity μ

$$
\mu=b-a+c \quad \text { with } b=\text { bonds, } a=\text { atoms, } c=\text { compounds }
$$

the number of edges which need to be broken to turn a cyclic into an acyclic graph. (Remember SMILES string generation!)

μ is also the cardinality (size) of the fundamental cycle basis.

Walk based Algorithms

(1) Grow a spanning tree and remember ring closure bonds.
(2) Walk from ring closure bonds towards root to common atom.
(3) Add ring bonds to tree and do 2 to find ring systems.

Shelley CA, (1983) Heuristic Approach for displaying chemical structures, J Chem Inf Comput Sci 23 (2):61-65 | DOI: 10.1021/ci00038a002

Spanning Trees and Cycles

Each spanning tree T has $V-1$ edges.
Adding an edge $E \backslash T$ to the spanning tree T will create a cycle.
Such a cycle is called a fundamental cycle (wrt. to T).
A graph with E edges has $E-V+1$ fundamental cycles.

The set of fundamental cycles of any spanning tree T forms a basis for the cycle space.

Fundamental Cycle Basis

Fundamental cycle bases are not generally unique but they always contain μ cycles.

Cycles can be represented by edge-incidence vectors in $\{0,1\}^{|E|}$.
All cycles can be derived from the fundamental cycle basis by "XOR-ing" 1 to μ edge-incidence vectors from the cycle basis.

Ring Sets

Ring set	Contents
All cycles	all (simple) cycles
Beta-ring	3- and 4-edged simple cycles + linear inde- pendent from 3 ore more smaller beta-rings
ESER	heuristic selection of smallest simple cycles
Essential cycles	Intersection of all SSSR
ESSR	all simple faces and primary/secondary cut faces
K-rings/relevant cycles	Union of all SSSR SERK-rings + simple cycles that are fusions of pairs of them
Faces	simple faces faces
SSSR	μ smallest simple cycles (minimal cycle basis)

Which Ring set to choose?

(1) Should in some way be "optimal" for the particular application.
(2) Should be unique for a given structure.
(3) Shoud be invariant (e.g. the processing order).
(4) Should include a minimal and sufficent number of rings to describee the ring system.

- 28 cycles (6×4-ring, 16×6-ring, 6×8-ring).
- 14 simple cycles.
- 6 simple faces.
- $\mu=5$.

Just 4 of the simple faces cover already all edges and vertices.

Hanser Algorithm: exhaustive ring perception

(1) Convert molecular graph to path graph

(2) Perform graph reduction

Hanser T, Jauffret P, Kaufmann G, (1996), J Chem Inf Comput Sci, 36(6):1146-1152. DOI:10.1021/ci960322f

Example: Hanser at work

$\xrightarrow{-a,-c,-b}$

$$
-n,-0,-p \left\lvert\, \begin{aligned}
& -d \\
& -f,-g
\end{aligned}\right.
$$

Function Rings(M-Graph):
Rings $\leftarrow \emptyset$
Convert(M-Graph, V, E)
while $V \neq \emptyset$ do
choose $x \in V$
Remove $(x, V, E$, Rings $)$
end while
Function Convert(M-Graph, $V, E)$:
$V \leftarrow \emptyset, E \leftarrow \emptyset$
for all $x \in V$ do
$v \leftarrow v \cup\{x\}$
end for
for all edges $(x, y) \in E$ do
$p_{x y} \leftarrow(x, y)$
$E \leftarrow E \cup\left\{p_{x y}\right\}$
end for

Function Remove(x, V, E, Rings):
for all paths $p_{x y}, p_{x z} \in E \times E$ do
if $p_{x y} \otimes p_{x z}=\{x\}$ then
$p_{y z} \leftarrow p_{x y} \oplus p_{x z}$
$E \leftarrow E \cup\left\{p_{y z}\right\}$
end if
end for
for all $p_{x y} \in E$ do
if $x=y$ then
Rings \leftarrow Rings $\cup\left\{p_{x y}\right\}$
$E \leftarrow E-\left\{p_{x y}\right\}$
end if
end for
$V \leftarrow V-\{x\}$

Ring Sets

A comparative tabulation of ring sets for the DBR database (based on a tabulation by Nickelsen ${ }^{32}$) is given in Table III. Block 1 gives the DBR structure with its number and nullity. Block 2 gives the cycle sizes and types present. Block 3 gives the comparative perception of type for each ring set. Block 4 gives the number of rings found of each type. Block 5 gives comments about particular types, where necessary. Other symbols are $\mu=$ nullity, $G=$ ring size, $\mathrm{e}=$ simple cycle, $\beta=$ β-ring, $\mathscr{S}=$ SSSR, $\mathcal{K}=\mathcal{K}$-ring, $\mathscr{E}=$ ESSR, $\sqrt{ }=$ included in ring set, and $X=$ not included in ring set. The comment codes given in the note column are $\mathrm{F}=$ simple face, $\mathrm{A}=\mathrm{SSSR}$ has to choose arbitrarily between symmetrical equivalents, D = Doppelpunkte exclude cycle as a simple cycle, $\mathrm{I}=$ sym-

Ring Sets

SSSR Algorithmic Approach 1: Horton

- compute a sufficiently large set of cycles
- sort them by weight
- initialize B to empty set
- go through the cycles C in order of increasing weight
- add C to B if is independent of B
- use Gaussian elimination to decide independence
- in order to make the approach efficient, one needs to identify a small set of cycles which is guaranteed to contain a minimum basis

Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph.
SIAM J.C. 16(2), 358-366 (1987)

SSSR Algorithmic Approach 1: Horton

- compute a sufficiently large set of cycles
- sort them by weight
- initialize B to empty set
- go through the cycles C in order of increasing weight
- add C to B if is independent of B
- use Gaussian elimination to decide independence
- in order to make the approach efficient, one needs to identify a small set of cycles which is guaranteed to contain a minimum basis
Horton set: for any edge $e=(a, b)$ and vertex v take the cycle $C_{e, v}$ consisting of e and the shortest paths from v to a and b. $O(n m)$ cycles, Gaussian elimination, running time $O\left(n m^{3}\right)$

SSSR Algorithmic Approach 2: de Pina

- construct basis iteratively, assume partial basis is $\left\{C_{1}, \ldots, C_{i}\right\}$
- compute a vector S orthogonal to C_{1}, \ldots, C_{i}.
- find a cheapest cycle C having a non-zero component in the direction S, i.e., $\langle C, S\rangle=0$
- add C to the partial basis
- C is not the cheapest cycle independent of the partial basis
- it is the shortest vector with a component in direction S.
- correct

SSSR / MCB

Type
undirected
Horton, 87
de Pina, 95
Golinsky/Horton, 02
Berger/Gritzmann/de Vries, 04
Kavitha/Mehlhorn/Michail/Paluch, 04
Mehlhorn/Michail, 07
directed
Authors

Mer

Kavitha/Mehlhorn, 04

Liebchen/Rizzi, 04
Kavitha, 05
Hariharan/Kavitha/Mehlhorn, 05
Hariharan/Kavitha/Mehlhorn, 06
Mehlhorn,Michail 07
open problem: faster algorithms

Approach Running time

$$
\begin{array}{r}
O\left(m^{3} n\right) \\
O\left(m^{3}+m n^{2} \log n\right) \\
O\left(m^{\omega} n\right) \\
O\left(m^{3}+m n^{2} \log n\right) \\
O\left(m^{2} n+m n^{2} \log n\right) \\
O\left(m^{2} n / \log n+m n^{2}\right)
\end{array}
$$

de Pina
Horton
de Pina
de Pina
de Pina
Horton-Pina

$$
\begin{array}{r}
O\left(m^{4} n\right) \text { det, } O\left(m^{3} n\right) \text { Monte Carlo } \\
O\left(m^{1+\omega} n\right) \\
O\left(m^{2} n \log n\right) \text { Monte Carlo } \\
O\left(m^{3} n+m^{2} n^{2} \log n\right) \\
O\left(m^{2} n+m n^{2} \log n\right) \text { Monte Carlo } \\
O\left(m^{3} n\right) \text { det, } O\left(m^{2} n\right) \text { Monte Carlo }
\end{array}
$$

Summary of Properties

Ring set	Type	Unique	Contains basis	Contains MCB	Contains $\mathcal{R}(G)$	Size
SSSR	G	No	Yes	MCB	No	$\mathcal{O}(m)$
ESER/DESER	G	Yes	No	No	No	\exp
Faces (G)	P	Yes	Yes	No	No	\exp
ESSR	P	Yes	Yes	No	No	\exp
SSCE	G	Yes	No	No	No	\exp
β-rings	P	No	Yes	No	No	$\mathcal{O}\left(m+n^{4}\right)$
SER	G	No	Yes	Yes	No	\exp
Elementary cycles	G	Yes	Yes	Yes	Yes	\exp
\mathcal{K}-rings						
Relevant Cycles	G	Yes	Yes	Yes	Yes	\exp

