
Ring Perception

Rings have profound influence on molecular properties:

1 small rings introduce strain into a molecule.

2 aromatic rings change physico-chemical properties.

3 rings present particular problemes in synthesis.
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Methods for Ring Perception

1 graph-theory based methods.
• depth-first search: to find all cycles.
• breadth-first search: fast for smallest cycles.

2 linear algebra based methods.
• manipulation of incidence or adjacency matrix.
• fundamental cycle basis.

Pre-processing of molecular graph:

1 Iteratively remove all nodes with degree 1
(resulting in the ring skeleton).

2 Merge ring nodes of degree 2 with corresponding neighbores
(resulting in basic graph with fewer nodes).
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Facts on Cycles

The minimal number of cycles is given by the nullity µ

µ = b − a + c with b = bonds, a = atoms, c = compounds

the number of edges which need to be broken to turn a cyclic into
an acyclic graph. (Remember SMILES string generation!)
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µ is also the cardinality (size) of the fundamental cycle basis.
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Walk based Algorithms
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1 Grow a spanning tree and remember ring closure bonds.

2 Walk from ring closure bonds towards root to common atom.

3 Add ring bonds to tree and do 2 to find ring systems.

Shelley CA, (1983) Heuristic Approach for displaying chemical structures, J Chem Inf Comput Sci 23 (2):61-65 |
DOI: 10.1021/ci00038a002
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Spanning Trees and Cycles

Each spanning tree T has V − 1 edges.

Adding an edge E\T to the spanning tree T will create a cycle.

Such a cycle is called a fundamental cycle (wrt. to T ).

A graph with E edges has E − V + 1 fundamental cycles.

The set of fundamental cycles of any spanning tree T forms a
basis for the cycle space.
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Fundamental Cycle Basis

Fundamental cycle bases are not generally unique but they always
contain µ cycles.
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Cycles can be represented by edge-incidence vectors in {0, 1}|E |.

All cycles can be derived from the fundamental cycle basis by
“XOR-ing” 1 to µ edge-incidence vectors from the cycle basis.
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Ring Sets

Ring set Contents
All cycles all (simple) cycles
Beta-ring 3- and 4-edged simple cycles + linear inde-

pendent from 3 ore more smaller beta-rings
ESER heuristic selection of smallest simple cycles
Essential cycles Intersection of all SSSR
ESSR all simple faces and primary/secondary cut

faces
K-rings/relevant cycles Union of all SSSR
SER K-rings + simple cycles that are fusions of

pairs of them
Faces simple faces faces
SSSR µ smallest simple cycles (minimal cycle basis)
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Which Ring set to choose?

1 Should in some way be “optimal” for the particular
application.

2 Should be unique for a given structure.

3 Shoud be invariant (e.g. the processing order).

4 Should include a minimal and sufficent number of rings to
describee the ring system.

• 28 cycles (6× 4-ring,
16× 6-ring, 6× 8-ring).

• 14 simple cycles.

• 6 simple faces.

• µ = 5.

Just 4 of the simple faces cover already all edges and vertices.
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Hanser Algorithm: exhaustive ring perception

1 Convert molecular graph to path graph
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Example: Hanser at work
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[m−n−o−p−l]

−a, −c, −b −k

[e−f−g−e][m−j−i−h]

[h−d−e][l−k−h]

−n, −o, −p
−d
−f, −g

−l

RING <− {[e−f−g−e]}
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RING <− {[m−n−o−p−l−m]}

RING <− {[m−j−i−h−k−l−m]}

RING <− {[m−n−o−p−l−k−h−i−j−m]}

Function Rings(M-Graph):
Rings ← ∅
Convert(M-Graph, V , E )
while V 6= ∅ do

choose x ∈ V

Remove(x, V , E ,Rings)
end while

Function Convert(M-Graph, V , E ):
V ← ∅, E ← ∅
for all x ∈ V do

v ← v ∪ {x}
end for

for all edges (x, y) ∈ E do

pxy ← (x, y)
E ← E ∪ {pxy}

end for

Function Remove(x, V , E ,Rings):
for all paths pxy , pxz ∈ E × E do

if pxy ⊗ pxz = {x} then

pyz ← pxy ⊕ pxz
E ← E ∪ {pyz}

end if

end for

for all pxy ∈ E do

if x = y then

Rings ← Rings ∪ {pxy }
E ← E − {pxy}

end if

end for

V ← V − {x}
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Ring Sets

Downs GM et al., (1989), J Chem Inf Comput Sci, 29(3):172-187. DOI:10.1021/ci00063a007
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Ring Sets
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Ring Sets

13 / 21



Ring Sets
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Ring Sets
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Ring Sets

16 / 21



SSSR Algorithmic Approach 1: Horton

• compute a sufficiently large set of cycles

• sort them by weight

• initialize B to empty set

• go through the cycles C in order of increasing weight

• add C to B if is independent of B

• use Gaussian elimination to decide independence

• in order to make the approach efficient, one needs to identify
a small set of cycles which is guaranteed to contain a
minimum basis
Horton set: for any edge e = (a, b) and vertex v take the cycle
Ce,v consisting of e and the shortest paths from v to a and b.
O(nm) cycles, Gaussian elimination, running time O(nm3)

Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph.

SIAM J.C. 16(2), 358-366 (1987)
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SSSR Algorithmic Approach 2: de Pina

• construct basis iteratively, assume partial basis is {C1, . . . ,Ci}

• compute a vector S orthogonal to C1, . . . ,Ci .

• find a cheapest cycle C having a non-zero component in the
direction S , i.e., 〈C ,S〉 = 0

• add C to the partial basis

• C is not the cheapest cycle independent of the partial basis

• it is the shortest vector with a component in direction S .

• correct

De Pina, J.C.: Applications of shortest path methods. Ph.D. thesis, University of Amsterdam (1995)
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SSSR / MCB
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Summary of Properties
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