Ring Perception

Rings have profound influence on molecular properties:

@ small rings introduce strain into a molecule.

@® aromatic rings change physico-chemical properties.

© rings present particular problemes in synthesis.

CO,H

Downs GM et al., (1989), J Chem Inf Comput Sci, 29(3):172-187. D0I:10.1021/ci00063a007
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Methods for Ring Perception

@ graph-theory based methods.

o depth-first search: to find all cycles.
e breadth-first search: fast for smallest cycles.

® linear algebra based methods.
e manipulation of incidence or adjacency matrix.
e fundamental cycle basis.
Pre-processing of molecular graph:

@ lteratively remove all nodes with degree 1
(resulting in the ring skeleton).

@Y@@

® Merge ring nodes of degree 2 with corresponding neighbores
(resulting in basic graph with fewer nodes).

O A

N
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Facts on Cycles

The minimal number of cycles is given by the nullity
p=b—a+c with b = bonds, a = atoms, ¢ = compounds

the number of edges which need to be broken to turn a cyclic into
an acyclic graph. (Remember SMILES string generation!)

COH

 is also the cardinality (size) of the fundamental cycle basis.
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Walk based Algorithms

12

@ Grow a spanning tree and remember ring closure bonds.
@® Walk from ring closure bonds towards root to common atom.

© Add ring bonds to tree and do 2 to find ring systems.

Shelley CA, (1983) Heuristic Approach for displaying chemical structures, J Chem Inf Comput Sci 23 (2):61-65 |
DOI: 10.1021/ci00038a002
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Spanning Trees and Cycles
Each spanning tree T has V — 1 edges.
Adding an edge E\ T to the spanning tree T will create a cycle.
Such a cycle is called a fundamental cycle (wrt. to T).

A graph with E edges has E — V + 1 fundamental cycles.

Taenol )

The set of fundamental cycles of any spanning tree T forms a
basis for the cycle space.
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Fundamental Cycle Basis

Fundamental cycle bases are not generally unique but they always
contain p cycles.

< - U < - <

v,=( 1,1,1,0,0,0) v,=(0,0,1,1,1,1) v,=(1,1,1,0,0,0) vy=( 1,1,0,1,1,1)

Cycles can be represented by edge-incidence vectors in {0, 1}|E|.

All cycles can be derived from the fundamental cycle basis by
“X0R-ing” 1 to i edge-incidence vectors from the cycle basis.

6
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Ring Sets

Ring set Contents

All cycles all (simple) cycles

Beta-ring 3- and 4-edged simple cycles + linear inde-
pendent from 3 ore more smaller beta-rings

ESER heuristic selection of smallest simple cycles

Essential cycles Intersection of all SSSR

ESSR all simple faces and primary/secondary cut

faces

K-rings/relevant cycles

Union of all SSSR

SER

K-rings + simple cycles that are fusions of
pairs of them

Faces

simple faces faces

SSSR

1 smallest simple cycles (minimal cycle basis)

N



Which Ring set to choose?

@ Should in some way be “optimal” for the particular
application.

® Should be unique for a given structure.
©® Shoud be invariant (e.g. the processing order).

O Should include a minimal and sufficent number of rings to
describee the ring system.

e 28 cycles (6 x 4-ring,

e 14 simple cycles.

6 simple faces.
u=>.

Just 4 of the simple faces cover already all edges and vertices.

16 x 6-ring, 6 x 8-ring).

21



Hanser Algorithm: exhaustive ring perception

@® Convert molecular graph to path graph

(1 a
| ab1
—_—
/\ [b—c] /Nb —d]
c—d c—d
[c—d]
M-Graph P-Graph

® Perform graph reduction

o Pox*Pax Pax*Pex
Pox o .
/ P\ ‘ mb .
b o e PoxtPey

Hanser T, Jauffret P, Kaufmann G, (1996), J Chem Inf Comput Sci, 36(6):1146-1152. D0I:10.1021/ci960322f



Example: Hanser at work
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RING <- {[m
RING <- {im -m
RING <- {[M-n-0-p-l-k-h-i-j-mi}
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RING <- {[e-f-g-e]} [-k-h]  [h-d-e]
o | — ) —— sO
m

fm-j-i-h]

[m-j-i-h]

Function Rings(M-Graph):
Rings + 0
Convert(M-Graph, V, E)
while V # () do
choose x € V
Remove(x, V, E, Rings)
end while
Function Convert(M-Graph, V, E):
V—0,E+0
for all x € V do
v+ vU {x}
end for
for all edges (x,y) € E do
Py < (%)
E <+ EU{py}
end for

Function Remove(x, V, E, Rings):
for all paths pyy, pxz € E X E do
if pxy ® pxz = {x} then
Pyz < Pxy D Pxz
E— EU{p:}

end if
end for
for all px, € E do
if x = y then
Rings <— Rings U {pxy }
E <+ E—{py}
end if
end for
V V- {x}
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Ring Sets

A comparative tabulation of ring sets for the DBR database
(based on a tabulation by Nickelsen®?) is given in Table III.
Block 1 gives the DBR structure with its number and nullity.
Block 2 gives the cycle sizes and types present. Block 3 gives
the comparative perception of type for each ring set. Block
4 gives the number of rings found of each type. Block 5 gives
comments about particular types, where necessary. Other
symbols are u = nullity, G = ring size, e = simple cycle, 8 =
B-ring, & = SSSR, # = H-ring, & = ESSR, v/ = included
in ring set, and X = not included in ring set. The comment
codes given in the note column are F = simple face, A = SSSR
has to choose arbitrarily between symmetrical equivalents, D
= Doppelpunkte exclude cycle as a simple cycle, I = sym-

Downs GM et al., (1989), J Chem Inf Comput Sci, 29(3):172-187. D0I:10.1021/ci00063a007



Ring Sets

1 2 3 4 5
Structure diagram Cycle type Glle{B{S[K|E]BIS|K|E|{Note
DBR-1 i=2
AB s IV [T
A+B 6 [[V/[V]x{x[/][1{o]o[1][ (M)
DBR-2 Bp=2
AB 6 |[v[V|V|V|VI[1]|1]1|t]] (F)
A+B 6 [[v[v/[x x|/ fol1]1lf (M)
DBR-3 p=4
A AB.CD VYV
D B A+B etc. 4 fIx[x[x]x|{x[fojofo]off (N)
C A+B+C+D 4 [[VIVIx{x[V][1{o[o[1] (M)
A+C etc. 6 flx|x|x|x|x[fofo]ejo] (D)




Ring Sets

1 2 3 4 5
Structure diagram Cycle type GlleJa[sIKle]B]|S|K[£]|Note
DBR-10 n=1

A, ... F 1 [VIVIVIVIV]e{e]e[s]l (F)

CERS G O VNN DD G)

A+Bt - +G s |V IVIVIT[ [T @

Boq A+B etc. 6 [[x[x[x[x[x[{fo]o]o]o] (N)
Q’ A+B+G etc. 8 [[V|x|x|x|x|fofoto]o] (S)
A+B+C+G etc. 8 [[ /] x[x[x]|x]ofofo]o] (S)
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Ring Sets

1 2 3 4 5
Structure diagram Cycle type G| e[s]s|K]£][8]S|K]|E||Note
DBR-14 Bs=5
B,C,D.E 3 [VIVIVIVIV][4[4[4[4]] (F)
) VIV
A+B+C+D+E 8 |[x[x[x[x]x[[o[o]o]o]f (N)
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Ring Sets

1

Structure diagram
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Ring Sets

1 2 3 S
Structure diagram Cycle t Gllelg]SIK]c]B]S]|K|E][|Note
DBR-28 h=1

) s VIV )

AB,C s [VIVIVIVIVIEE 313 (F)

B+C 6 [|[V]VIx[V{V[1]o[1]1] (P)

A+B+C+D 7 [|VIx[x{x{v[ojo]o]1]l (M)

A+D 7 [[V]v[x|x]x[[1[o]o{o]f (S)

A+B+C 8 [Ix|x[x]x[x]lofojo]o]j (S)

A+C+D 9 [Ix[x[x]x[{x]iofo]o o]l (S)

C+D, B+C+D 9 [[x[xfx[x[x[fofo[ofo] (N)

A A+B, A+C To[[x [x[x|x[x[[e[e]o[o] (N)
A+B+D 11][x [x[x[x][x[jo[ofo|o]l (N)

b} C
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SSSR Algorithmic Approach 1: Horton

compute a sufficiently large set of cycles

sort them by weight

initialize B to empty set

go through the cycles C in order of increasing weight
add C to B if is independent of B

use Gaussian elimination to decide independence

in order to make the approach efficient, one needs to identify
a small set of cycles which is guaranteed to contain a
minimum basis
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SSSR Algorithmic Approach 1: Horton

e compute a sufficiently large set of cycles

e sort them by weight

e initialize B to empty set

e go through the cycles C in order of increasing weight
e add C to B if is independent of B

e use Gaussian elimination to decide independence

e in order to make the approach efficient, one needs to identify
a small set of cycles which is guaranteed to contain a
minimum basis
Horton set: for any edge e = (a, b) and vertex v take the cycle
Ce,v consisting of e and the shortest paths from v to a and b.
O(nm) cycles, Gaussian elimination, running time O(nm?)

Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph.

SIAM J.C. 16(2), 358-366 (1987)
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SSSR Algorithmic Approach 2: de Pina

e construct basis iteratively, assume partial basis is {Cy,..., G}

e compute a vector S orthogonal to Cy,...,C;.

e find a cheapest cycle C having a non-zero component in the
direction S, i.e., (C,S) =0

e add C to the partial basis

e C is not the cheapest cycle independent of the partial basis

e it is the shortest vector with a component in direction S.

e correct

De Pina, J.C.: Applications of shortest path methods. Ph.D. thesis, University of Amsterdam (1995)
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SSSR / MCB

Type Authors
undirected Horton, 87
de Pina, 95

Golinsky/Horton, 02
Berger/Gritzmann/de Vries, 04
Kavitha/Mehlhorn/Michail/Paluch, 04
Mehlhorn/Michail, 07

directed Kavitha/Mehlhorn, 04
Liebchen/Rizzi, 04
Kavitha, 05
Hariharan/Kavitha/Mehlhorn, 05
Hariharan/Kavitha/Mehlhorn, 06
Mehlhorn,Michail 07

open problem: faster algorithms

Approach

Horton
de Pina
Horton
de Pina
de Pina

Horton-Pina

de Pina
Horton
de Pina
de Pina
de Pina
Horton-Pina

Running time

O(m3n)

O(m? +mn*logn)
O(m®n)

O(m3 +mn®logn)
O(m*n+mn*logn)
O(m?n/logn +mn?)

O(m*n) det, O(m*n) Monte Carlo
O(m'+%n)

O(m?nlogn) Monte Carlo
O(m3n+m?n*logn)
O(m*n+mn?logn) Monte Carlo
O(m>n) det, O(m?n) Monte Carlo
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Summary of Properties

Ring set Type Unique Contains Contains Contains Size
basis MCB R(G)
SSSR G No Yes MCB No O(m)
ESER/DESER G Yes No No No exp
Faces(G) P Yes Yes No No exp
ESSR P Yes Yes No No exp
SSCE G Yes No No No exp
[-rings P No Yes No No O(m + n?)
SER G No Yes Yes No exp
Elementary cycles | G Yes Yes Yes Yes exp
K-rings
Relevant Cycles G Yes Yes Yes Yes exp
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