Ring Perception

Rings have profound influence on molecular properties:

- 1 small rings introduce strain into a molecule.
- 2 aromatic rings change physico-chemical properties.
- 3 rings present particular problemes in synthesis.

Downs GM et al., (1989), J Chem Inf Comput Sci, 29(3):172-187. DOI:10.1021/ci00063a007

Methods for Ring Perception

1 graph-theory based methods.

- depth-first search: to find all cycles.
- breadth-first search: fast for smallest cycles.
- 2 linear algebra based methods.
 - manipulation of incidence or adjacency matrix.
 - fundamental cycle basis.

Pre-processing of molecular graph:

 Iteratively remove all nodes with degree 1 (resulting in the ring skeleton).

2 Merge ring nodes of degree 2 with corresponding neighbores (resulting in basic graph with fewer nodes).

Facts on Cycles

The minimal number of cycles is given by the nullity μ

 $\mu = b - a + c$ with b = bonds, a = atoms, c = compounds

the number of edges which need to be broken to turn a cyclic into an acyclic graph. (Remember SMILES string generation!)

 μ is also the cardinality (size) of the fundamental cycle basis.

1 Grow a spanning tree and remember *ring closure bonds*.

- **2** Walk from ring closure bonds towards root to common atom.
- **3** Add ring bonds to tree and do 2 to find ring systems.

Shelley CA, (1983) Heuristic Approach for displaying chemical structures, J Chem Inf Comput Sci 23 (2):61-65 | D0I: 10.1021/ci00038a002

Spanning Trees and Cycles

Each spanning tree T has V - 1 edges.

Adding an edge $E \setminus T$ to the spanning tree T will create a cycle.

Such a cycle is called a fundamental cycle (wrt. to T).

A graph with E edges has E - V + 1 fundamental cycles.

The set of fundamental cycles of any spanning tree T forms a basis for the cycle space.

Fundamental Cycle Basis

Fundamental cycle bases are not generally unique but they always contain μ cycles.

Cycles can be represented by edge-incidence vectors in $\{0,1\}^{|E|}$.

All cycles can be derived from the fundamental cycle basis by "XOR-ing" 1 to μ edge-incidence vectors from the cycle basis.

Ring set	Contents					
All cycles	all (simple) cycles					
Beta-ring	3- and 4-edged simple cycles + linear inde-					
	pendent from 3 ore more smaller beta-rings					
ESER	heuristic selection of smallest simple cycles					
Essential cycles	Intersection of all SSSR					
ESSR	all simple faces and primary/secondary cut					
	faces					
K-rings/relevant cycles	Union of all SSSR					
SER	K-rings $+$ simple cycles that are fusions of					
	pairs of them					
Faces	simple faces faces					
SSSR	μ smallest simple cycles (minimal cycle basis)					

Which Ring set to choose?

- Should in some way be "optimal" for the particular application.
- 2 Should be unique for a given structure.
- **3** Shoud be invariant (e.g. the processing order).
- Should include a minimal and sufficent number of rings to describee the ring system.

- 28 cycles (6 × 4-ring, 16 × 6-ring, 6 × 8-ring).
- 14 simple cycles.
- 6 simple faces.
- $\mu = 5$.

Just 4 of the simple faces cover already all edges and vertices.

Hanser Algorithm: exhaustive ring perception

1 Convert molecular graph to path graph

Hanser T, Jauffret P, Kaufmann G, (1996), J Chem Inf Comput Sci, 36(6):1146-1152. DDI:10.1021/ci960322f

Example: Hanser at work


```
Function Rings(M-Graph):
Rings \leftarrow \emptyset
Convert(M-Graph, V, E)
while V \neq \emptyset do
     choose x \in V
     Remove(x, V, E, Rings)
end while
Function Convert(M-Graph, V, E):
V \leftarrow \emptyset, E \leftarrow \emptyset
for all x \in V do
     v \leftarrow v \cup \{x\}
end for
for all edges (x, y) \in E do
     p_{xy} \leftarrow (x, y)
     E \leftarrow E \cup \{p_{yy}\}
end for
```

 $\begin{array}{l} \mbox{Function Remove}(x,V,E,Rings): \\ \mbox{for all paths } p_{xy}, p_{xz} \in E \times E \mbox{ do} \\ \mbox{if } p_{xy} \otimes p_{xz} = \{x\} \mbox{ then } \\ p_{yz} \leftarrow p_{xy} \oplus p_{xz} \\ E \leftarrow E \cup \{p_{yz}\} \\ \mbox{end if } \\ \mbox{end for } \\ \mbox{for all } p_{xy} \in E \mbox{ do } \\ \mbox{if } x = y \mbox{ then } \\ Rings \leftarrow Rings \cup \{p_{xy}\} \\ E \leftarrow E - \{p_{xy}\} \\ \mbox{end if } \\ \mbox{end for } \\ V \leftarrow V - \{x\} \end{array}$

A comparative tabulation of ring sets for the DBR database (based on a tabulation by Nickelsen³²) is given in Table III. Block 1 gives the DBR structure with its number and nullity. Block 2 gives the cycle sizes and types present. Block 3 gives the comparative perception of type for each ring set. Block 4 gives the number of rings found of each type. Block 5 gives comments about particular types, where necessary. Other symbols are μ = nullity, G = ring size, e = simple cycle, β = β -ring, $\vartheta = SSSR$, $\mathcal{H} = \mathcal{H}$ -ring, $\mathcal{E} = ESSR$, $\sqrt{=}$ included in ring set, and \times = not included in ring set. The comment codes given in the note column are F = simple face. A = SSSR has to choose arbitrarily between symmetrical equivalents, D = Doppelpunkte exclude cycle as a simple cycle, I = sym-

Downs GM et al., (1989), J Chem Inf Comput Sci, 29(3):172-187. DOI:10.1021/ci00063a007

	1		2		1		3		T		5			
Str	ucture diagram		Cycle type	G	e	ß		ĸ	E	ß	4		ε	Note
DBR-1		$\mu = 2$	of the type	-	-	F-	-		-	ŕ	-	-	-	
DBICI		$\mu = 3$												
	\wedge													
			A,B	5	\checkmark	\checkmark	\checkmark	$\overline{\mathbf{v}}$		1	1	1	1	(F)
	A)		A+B	6	$\overline{\mathbf{v}}$	V	×	×		1	0	0	1	(M)
	\checkmark									П			Π	
DBR-2		$\mu = 2$												
	\mathbf{A}													
	$\langle \rangle$		A P	6		1				1	1	1	1	(F)
	A B		A,B	_	\checkmark	- /	\checkmark	\checkmark	×,	-	-	_		
			A+B	6	\vee	\checkmark	×	×	\mathbf{v}	1	0	1	1	(M)
	•													
DBR-3		$\mu = 4$											H	
DDIC-0		μ = .												
		-									_			(7)
	A A		A,B,C,D	3	\checkmark	\checkmark	$\overline{\mathbf{v}}$	\checkmark	\checkmark	-	4	4	4	(F)
	DXB		A+B etc.	4	×	×	×	×	×		_	0	0	(N)
	$\left \left \left \right\rangle \right \right $		A+B+C+D	4		\checkmark	×	×	\checkmark	_		0	1	(M)
	لاك		A+C etc.	6	×	×	×	×	×	0	0	0	0	(D)
		i												
L					4				_	-			\square	

1	2			3						4				
Structure diagram	Cycle type	G	e	β	5	κ	ε	β	S	κ	ε	Note		
DBR-10 $\mu =$	7													
	A,,F	4	1.7	17	17	17	$\overline{\mathbf{v}}$	6	6	6	6	(F)		
FLA	G	6	V	V	V	V	V	1	1	1	ī	(F)		
E G B	A+B+···+G	6	V	V	×	V	V	1	0	1	1	(I)		
	A+B etc.	6	×	×	×	×	×	0	0	0	0	(N)		
	A+B+G etc.	8	$\overline{\mathbf{v}}$	×	×	×	×	0	0	0	0	(~)		
	A+B+C+G etc.	8	\checkmark	×	×	×	×	0	0	0	0	(S)		
											Π			
								II.						

1	2	2		3						5		
Structure diagram	Cycle type	G	e	β	S	ĸ	E	β	S	κ	E	Note
DBR-14	$\mu = 5$ B,C,D,E A $A+B+C+D+E$	3 4 8	× ×	√ √ ×	× × ×	N N X X	√ √ ×	4	1	1	4 1 0	(F) (F) (N)

1	2				Γ	4	5					
Structure diagram	Cycle type	G	e	β	S	ĸ	ε	β	Ś	κ	E	Note
DBR-26 $\mu = 6$							_					
\sim												
			L,	╞		L-,	$ \rightarrow $	2	-	2	2	
	A,D	4	Ľ,	Ľ,	V.	Υ,	⊻,			_		(F)
	C,E	5	\vee	<u>_</u>	\checkmark	\checkmark	\checkmark	2	2	2	2	(F)
	В	6	Į√,	Į√,	\checkmark	\checkmark	\checkmark	1	1	1	1	(F)
	A+B+···+F	6	$\overline{\mathbf{V}}$	\vee	\checkmark	$\overline{\mathbf{v}}$	\checkmark	1	1	1	1	(0)
1	B+C+D+E	6		$\overline{\mathbf{V}}$	×	\checkmark	\checkmark	1	0	1	1	(R)
	B+A+F	6	\checkmark	$\overline{\mathbf{V}}$	×	\checkmark	\checkmark	1	0	1	1	(P)
	A+B+C+F, A+B+E+F	7	×	×	×	×	×	0	0	0	0	(S)
	A+B+C+D+F,	7	×	×	×	×	×	0	0	0	0	(S)
	A+B+D+E+F											
	F	8	×	×	×	×	×	0	0	0	0	(N)
	B+C+D, B+D+E	9	×	×	×	×	×	0	0	0	0	(S)
КВУ				F						Γ		
$ \setminus \rightarrow \checkmark /$												
1	1										1 1	

1	2				3		I		5			
Structure diagram	Cycle type	G	e	β	S	ĸ	E	β	S	κ	E	Note
DBR-28 $\mu = 4$												Ì
	D	5	ΙV,	V,		V,	\checkmark	1	1	1	1	(F)
	A,B,C	6	√	\checkmark	\checkmark	\checkmark	\checkmark	3	3	3	3	(F)
	B+C	6	∇	\checkmark	×	\checkmark	\checkmark	1	0	1	1	(P)
1 🕈	A+B+C+D	7	$\overline{\mathbf{v}}$	×	×	×	\checkmark	0	0	0	1	(M)
	A+D	7	$\overline{\mathbf{V}}$	\checkmark	×	×	×	1	0	0	0	(S)
T T	A+B+C	8	×	×	×	×	×	0	0	0	0	(S)
	A+C+D	9	×	×	×	×	×	0	0	Ō	0	(S)
······	C+D, B+C+D	9	×	×	×	×	×	0	0	0	0	(N)
AB	A+B, A+C	10	×	×	×	×	×	0	0	0	0	(N)
	A+B+D	11	×	×	×	×	×	0	0	0	Ō	(N)

SSSR Algorithmic Approach 1: Horton

- compute a sufficiently large set of cycles
- sort them by weight
- initialize B to empty set
- go through the cycles C in order of increasing weight
- add C to B if is independent of B
- use Gaussian elimination to decide independence
- in order to make the approach efficient, one needs to identify a small set of cycles which is guaranteed to contain a minimum basis

Horton set: for any edge e = (a, b) and vertex v take the cycle $C_{e,v}$ consisting of e and the shortest paths from v to a and b. O(nm) cycles, Gaussian elimination, running time $O(nm^3)$

Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph.

```
SIAM J.C. 16(2), 358-366 (1987)
```

SSSR Algorithmic Approach 1: Horton

- compute a sufficiently large set of cycles
- sort them by weight
- initialize B to empty set
- go through the cycles C in order of increasing weight
- add C to B if is independent of B
- use Gaussian elimination to decide independence
- in order to make the approach efficient, one needs to identify a small set of cycles which is guaranteed to contain a minimum basis

Horton set: for any edge e = (a, b) and vertex v take the cycle $C_{e,v}$ consisting of e and the shortest paths from v to a and b. O(nm) cycles, Gaussian elimination, running time $O(nm^3)$

Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph.

```
SIAM J.C. 16(2), 358-366 (1987)
```

SSSR Algorithmic Approach 2: de Pina

- construct basis iteratively, assume partial basis is $\{C_1, \ldots, C_i\}$
- compute a vector S orthogonal to C_1, \ldots, C_i .
- find a cheapest cycle C having a non-zero component in the direction S, i.e., $\langle C, S \rangle = 0$
- add C to the partial basis
- C is not the cheapest cycle independent of the partial basis
- it is the shortest vector with a component in direction S.
- correct

De Pina, J.C.: Applications of shortest path methods. Ph.D. thesis, University of Amsterdam (1995)

SSSR / MCB

Туре	Authors	Approach	Running time
undirected	Horton, 87	Horton	$O(m^3n)$
	de Pina, 95	de Pina	$O(m^3 + mn^2 \log n)$
	Golinsky/Horton, 02	Horton	$O(m^{\omega}n)$
	Berger/Gritzmann/de Vries, 04	de Pina	$O(m^3 + mn^2 \log n)$
	Kavitha/Mehlhorn/Michail/Paluch, 04	de Pina	$O(m^2n + mn^2\log n)$
	Mehlhorn/Michail, 07	Horton-Pina	$O(m^2n/\log n + mn^2)$
directed	Kavitha/Mehlhorn, 04	de Pina	$O(m^4n)$ det, $O(m^3n)$ Monte Carlo
	Liebchen/Rizzi, 04	Horton	$O(m^{1+\omega}n)$
	Kavitha, 05	de Pina	$O(m^2 n \log n)$ Monte Carlo
	Hariharan/Kavitha/Mehlhorn, 05	de Pina	$O(m^3n + m^2n^2\log n)$
	Hariharan/Kavitha/Mehlhorn, 06	de Pina	$O(m^2n + mn^2\log n)$ Monte Carlo
	Mehlhorn,Michail 07	Horton-Pina	$O(m^3n)$ det, $O(m^2n)$ Monte Carlo
open prob	lem: faster algorithms		

20 / 21

Summary of Properties

Ring set	Type	Unique	Contains	Contains	Contains	Size
			basis	MCB	$\mathcal{R}(G)$	
SSSR	G	No	Yes	MCB	No	$\mathcal{O}(m)$
ESER/DESER	G	Yes	No	No	No	\exp
Faces(G)	P	Yes	Yes	No	No	exp
ESSR	P	Yes	Yes	No	No	\exp
SSCE	G	Yes	No	No	No	\exp
β -rings	P	No	Yes	No	No	$\mathcal{O}(m+n^4)$
SER	G	No	Yes	Yes	No	\exp
Elementary cycles	G	Yes	Yes	Yes	Yes	\exp
\mathcal{K} -rings						
Relevant Cycles	G	Yes	Yes	Yes	Yes	\exp