
Petri Nets

1

Petri nets

Petri nets are a basic model of parallel and distributed systems, designed by Carl
Adam Petri in 1962 in his PhD Thesis: “Kommunikation mit Automaten”. The
basic idea is to describe state changes in a system with transitions.

��
��

��
��

��
��

��
��

t
���

@@R

@@R

���
s1 s2

s3 s4

Petri nets contain places ��
��

(Stelle) and transitions (Transition) that may be
connected by directed arcs.

Transitions symbolise actions; places symbolise states or conditions that need to
be met before an action can be carried out.

2

Behaviour of Petri nets

Places may contain tokens that may move to other places by executing (“firing”)
actions.

��
��

��
��

��
��

��
��

t
���

@@R

@@R

���
s1

}

} s2

s3 s4

In the example, transition t may “fire” if there are tokens on places s1 and s3.
Firing t will remove those tokens and place new tokens on s2 and s4.

3

Place/Transition Nets

16

Place/Transition Nets

Let us study Petri nets and their firing rule in more detail:

• A place may contain several tokens, which may be interpreted as resources.

• There may be several input and output arcs between a place and a transition.
The number of these arcs is represented as the weight of a single arc.

• A transition is enabled if its each input place contains at least as many tokens
as the corresponding input arc weight indicates.

• When an enabled transition is fired, its input arc weights are subtracted from
the input place markings and its output arc weights are added to the output
place markings.

17

Place/Transition Net

A Place/Transition Net (P/T net) is a tuple N = 〈P, T , F , W , M0〉, where

• P is a finite set of places,

• T is a finite set of transitions,

• the places P and transitions T are disjoint (P ∩ T = ∅),

• F ⊆ (P × T) ∪ (T × P) is the flow relation,

• W : F → (IN \ {0}) is the arc weight mapping, and

• M0 : P → IN is the initial marking representing the initial distribution of tokens.

18

P/T nets: Remarks

If 〈p, t〉 ∈ F for a transition t and a place p, then p is an input place of t ,

If 〈t , p〉 ∈ F for a transition t and a place p, then p is an output place of t ,

Let a ∈ P ∪ T . The set •a = {a′ | 〈a′, a〉 ∈ F} is called the pre-set of a, and the
set a• = {a′ | 〈a, a′〉 ∈ F} is its post-set.

When drawing a Petri net, we usually omit arc weights of 1. Also, we may either
denote tokens on a place either by black circles, or by a number.

19

Alternative definitions

Sometimes the notation S (for Stellen) is used instead of P (for places) in the
definition of Place/Transition nets.

Some definitions also use the notion of a place capacity (the maximum number
of tokens allowed in a place, possibly unbounded). Place capacities can be
simulated by adding some additional places to the net (we will see how later),
and thus for simplicity we will not define them in this course.

20

Place/Transition Net: Example

&%
'$

p2

&%
'$

p1

&%
'$

p3

t

�
���

@
@@R
2

-2

vvv vv

v v

The place/transition net 〈P, T , F , W , M0〉 above is defined as follows:

• P = {p1, p2, p3},

• T = {t},

• F = {〈p1, t〉, 〈p2, t〉, 〈t , p3〉},

• W = {〈p1, t〉 7→ 2, 〈p2, t〉 7→ 1, 〈t , p3〉 7→ 2},

• M0 = {p1 7→ 2, p2 7→ 5, p3 7→ 0}.

21

Notation for markings

Often we will fix an order on the places (e.g., matching the place numbering),
and write, e.g., M0 = 〈2,5,0〉 instead.

When no place contains more than one token, markings are in fact sets, in which
case we often use set notation and write instead M0 = {p5, p7, p8}.

Alternatively, we could denote a marking as a multiset, e.g.
M0 = {p1, p1, p2, p2, p2, p2, p2}.

The notation M(p) denotes the number of tokens in place p in marking M.

22

The firing rule revisited

Let 〈P, T , F , W , M0〉 be a Place/Transition net and M : P → IN one of its
markings.

Firing condition:

Transition t ∈ T is M-enabled, written M t−→, iff ∀p ∈ •t : M(p) ≥ W(p, t).

Firing rule:
An M-enabled transition t may fire, producing the successor marking M ′, written

M t−→ M ′, where

∀p ∈ P : M ′(p) = M(p)− W̄(p, t) + W̄(t , p)

where W̄ is defined as W̄(x , y) := W(x , y) for 〈x , y〉 ∈ F and W̄(x , y) := 0

otherwise.

23

The firing rule of Place/Transition Nets: Example

&%
'$

p2

&%
'$

p1

&%
'$

p3

t

�
���

@
@@R
2

-2

Marking M M t−→ M ′

{p1 7→ 2, p2 7→ 5, p3 7→ 0} enabled {p1 7→ 0, p2 7→ 4, p3 7→ 2}
{p1 7→ 0, p2 7→ 4, p3 7→ 2} disabled

{p1 7→ 1, p2 7→ 5, p3 7→ 0} disabled

Note: If M t−→ M ′, then we call M ′ the successor marking of M.

24

Reachable markings

Let M be a marking of a Place/Transition net N = 〈P, T , F , W , M0〉.

The set of markings reachable from M (the reachability set of M, written
reach(M)) is the smallest set of markings, such that:

1. M ∈ reach(M), and

2. if M ′ t−→ M ′′ for some t ∈ T , M ′ ∈ reach(M), then M ′′ ∈ reach(M).

Let M be a set of markings. The previous notation is extended to sets of
markings in the obvious way:

reach(M) =
⋃

M∈M reach(M)

The set of reachable markings reach(N) of a net N = 〈P, T , F , W , M0〉 is
defined to be reach(M0).

25

Reachability Graph

The reachability graph of a place/transition net N = 〈P, T , F , W , M0〉 is a rooted,
directed graph G = 〈V , E , v0〉, where

• V = reach(N) is the set of vertices, i.e. each reachable marking is a vertex;

• v0 = M0, i.e. the initial marking is the root node;

• E =
{
〈M, t , M ′〉

∣∣∣ M ∈ V and M t−→ M ′
}

is the set of edges, i.e. there is an
edge from each marking (resp. vertex) M to each of its successor markings,
and the edge is labelled with the firing transition.

26

Reachability Graph: Example

��
��

��
��

��
��

��
��

��
��

p1 p3 p5

p2 p4

t1 t3

t2

v

v

- - - -

- -

& $
?

�
�
�
�
���

�
�
�
�
���

t1

t1

@
@

@
@

@@I

@
@

@
@

@@I

t2

t2
�
�
�
�
���

t3

> 〈1,1,0,0,0〉

〈1,0,0,1,0〉 〈0,1,1,0,0〉

〈0,0,1,1,0〉 〈0,0,0,0,1〉

• The weight of each arc is 1.

• The graph shows that t3 cannot be fired if t2 is fired before t1. Thus, intuitively
speaking, t1 and t2 are not independent, even though their presets and
postsets are mutually disjunct.

27

Computing the reachability graph

REACHABILITY-GRAPH(〈P, T , F , W , M0〉)
1 〈V , E , v0〉 := 〈{M0}, ∅, M0〉;
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M from Work ;

5 Work := Work \ {M};
6 for t ∈ enabled(M)

7 do M ′ := fire(M, t);
8 if M ′ /∈ V
9 then V := V ∪ {M ′}

10 Work := Work ∪ {M ′};
11 E := E ∪ {〈M, t , M ′〉};
12 return 〈V , E , v0〉;

The algorithm makes use of two
functions:
• enabled(M) := {t | M t−→}
• fire(M, t) := M ′

if M t−→ M ′

The set Work may be imple-
mented as a stack, in which case
the graph will be constructed in
a depth-first manner, or as a
queue for breadth-first. Breadth
first search will find the short-
est transition path from the initial
marking to a given (erroneous)
marking. Some applications re-
quire depth first search.

28

The size of the reachability graph

In general, the graph may be infinite, i.e. if there is no bound on the number
tokens on some place. Example:

- -��
��

Definition: If each place of a place/transition net can contain at most k tokens in
each reachable marking, the net is said to be k -safe.

A k -safe net has at most (k + 1)|P| markings; for 1-safe nets, the limit is 2|P|.

29

Reachability graph

Example

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

�
1 �

3

�
3

�
2

�
2 �

2

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 11 / 59

Reachability graph

Example

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

�
1 �

3

�
3

�
2

�
2 �

2

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 12 / 59

Reachability graph

Example

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

�
1 �

3

�
3

�
2

�
2 �

2

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 13 / 59

Reachability graph

Example

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

�
1

�
1 �

3

�
3

�
2

�
2 �

2

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 14 / 59

Reachability graph

Example

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

�
1 �

1

�
1 �

3

�
3

�
2

�
2 �

2

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 15 / 59

Reachability graph

Example

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 16 / 59

Reachability graph

Example

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 17 / 59

Analysis of Petri net properties

Motivation

A marked net 〈N, M0〉 with N = (P, T ,Pre, Post) specifies:

an initial marking (i.e., state) M0;

the rules of evolution.

No explicit enumeration of:

net language, i.e., the set of sequences of transitions that can fire:

L(N,M0) = {σ ∈ T ∗ | M0[σ〉};

reachability set, i.e., the set of reachable markings:

R(N, M0) = {M ∈ N|P| | (∃σ ∈ L(N,M0)) M0[σ〉M}.

The information on reachable markings and firing sequences is useful to
determine if the net has given properties.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 4 / 59

Reachability graph

Reachability graph

The reachability graph of a marked net 〈N,M0〉 is an automaton
G = (X , E , δ, x0) where:

X = R(N,M0), i.e., the states of the automaton are the reachable
markings;

E = T , i.e., the events in the alphabet are the transitions of the net;

for any two reachable markings M, M ′:

δ(M, t) = M ′ ⇐⇒ M[t〉M ′,

i.e., there exists arc labeled t from M to M ′ on the automaton iff
marking M ′ is reachable from M firing transition t;

x0 = M0, i.e., the initial state of the automaton is the initial marking.

It can be constructed only if the reachability set if finite, i.e., if the net is
bounded.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 10 / 59

Analysis of Petri net properties

Boundedness

Definition

A place p ∈ P is k-bounded if for any marking M ∈ R(N, M0) it holds
M(p) ≤ k , i.e., in all reachable markings the number of tokens it contains
never exceeds k .

Useful to determine maximal capacity or overflow of buffers.

Definition

A marked net 〈N, M0〉 is k-bounded if all its places are k-bounded.

A bounded net has a finite reachability set, while an unbounded net has an
infinite reachability set.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 5 / 59

Analysis of Petri net properties

Liveness

Definition

A transition t ∈ T is quasi-live if there exists a firing sequence σ ∈ T ∗

such that M0[σt〉, i.e., transition t can eventually fire.

A transition t ∈ T is live if for any marking M ∈ R(N, M0) there exists a
firing sequence σ ∈ T ∗ such that M[σt〉, i.e., from from any reachable
marking t can eventually fire.

Useful to characterize an event that can occur at least once
(quasi-liveness) or that can always eventually occur (liveness).

Definition

A marked net 〈N, M0〉 is quasi-live (resp. live) if all its transitions are
quasi-live (resp., live).

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 6 / 59

Analysis of Petri net properties

Reversibility

Definition

A marked net 〈N, M0〉 is reversible if for any marking M ∈ R(N, M0) it
holds M0 ∈ R(N, M), i.e., from any reachable marking M it is possible to
reach the initial marking M0.

Useful to determine if a system can always be reinitialized.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 7 / 59

Reachability graph

What does the reachability graph tell us?

Proposition

Given a marked net 〈N, M0〉 let G be its reachability graph with set of
states X constructed using the previous algorithm.

R(N,M0) = X

L(N, M0) = L(G)

Two main informations from the reachability graph G.

Marking M is reachable ⇐⇒ M is a node of G.

σ ∈ L(N,M0) ⇐⇒ δ(M0, σ) is defined in G

A stronger property also holds

M[σ〉M ′ ⇐⇒ there exists a path from M to M ′ labeled by σ

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 19 / 59

Reachability graph

What does the reachability graph tell us?

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2

Example:

M = [0 1 1]T is reachable

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 20 / 59

Reachability graph

What does the reachability graph tell us?

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2

Example:

M = [0 1 1]T is reachable

[2 0 0]T [t1t3〉 [1 0 1]T

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 21 / 59

Reachability graph

Partition of an automaton in components

The states of an automaton can be partitioned into strongly connect
components (i.e, maximal set of states mutually reachable).

1 Transient components: there are paths going out of the component.

2 Ergodic (or absorbing) components: there no are paths going out of
the component.

x1 x3

x2 x4

x5 x7

x6

C1

C 2 C 4

C 3

T

T

E

E

This will be useful to check for reversibility and liveness.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 22 / 59

Reachability graph

Boundeness

The reachability graph of marked net 〈N, M0〉 can only be
constructed if the net is bounded.
The bound kp of place p is max M(p) for all nodes in G.
The bound k on the net is max kp for all places.

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2

Example

The bound of all places is kp = 2

The net is 2-bounded.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 23 / 59

Reachability graph

Liveness

A transition t is quasi-live ⇐⇒ an arc t appears in the graph.

A transition t is live ⇐⇒ an arc t appears in all ergodic components.

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2

T

T

E

Example 1

All transitions are quasi-live

No transition is live: once we reach the
ergodic component no transition can fire.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 24 / 59

Reachability graph

Liveness

A transition t is quasi-live ⇐⇒ an arc t appears in the graph.

A transition t is live ⇐⇒ an arc t appears in all ergodic components.

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2 �

4 �
4 �

4

T

E

T

Example 2

All transitions are quasi-live

Transition t4 is the only one live.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 25 / 59

Reachability graph

Reversibility

Marked net 〈N,M0〉 is reversible ⇐⇒ the graph is strongly connected,
i.e., it consists of a single connected component.

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
3

�
2

�
2 �

2

�
2

T

T

E

Example 1

The graph is not strongly connected: the net
is not reversible.

E.g., from M = [0 1 1]T the initial marking
M0 = [1 1 0]T is not reachable.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 26 / 59

Reachability graph

Reversibility

Marked net 〈N,M0〉 is reversible ⇐⇒ the graph is strongly connected,
i.e., it consists of a single connected component.

�
1 �

1 �
2

�
3

�
3

[1 1 0]

[0 2 0] [1 0 1]

[2 0 0]

[0 1 1]

[0 0 2]

�
1 �

1

�
1 �

3

�
3

�
2

�
2 �

2

�
2 �

4

�
4

�
4

�
3 �

4

Example 2

The graph is strongly connected: the net is
reversible.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 27 / 59

Example: A logical puzzle

A man is travelling with a wolf, a goat, and a cabbage. The four come to a river
that they must cross. There is a boat available for crossing the river, but it can
carry only the man and at most one other object. The wolf may eat the goat when
the man is not around, and the goat may eat the cabbage when unattended.

Can the man bring everyone across the river without endangering the goat or the
cabbage? And if so, how?

Cabbage

Goat

Wolf

Man

River

34

Example: Modeling

We are going to model the situation with a Petri net.

The puzzle mentions the following objects:

Man, wolf, goat, cabbage, boat. Both can be on either side of the river.

The puzzle mentions the following actions:

Crossing the river, wolf eats goat, goat eats cabbage.

Objects and their states are modeled by places.
Actions are modeled by transitions.

Actually, we can omit the boat, because it is always going to be on the same side
as the man.

35

Example: Places

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

36

Crossing the river (left to right)

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

MLR

37

Crossing the river (left to right)

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WLR

MLR

38

Crossing the river (left to right)

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WLR

MLR

CLR

GLR

39

Crossing the river (right to left)

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WRL

MRL

CRL

GRL

40

Wolf eats goat

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WL

ML

WGL

41

Wolf eats goat, goat eats cabbage

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WL

ML

WGL WGR

CGL CGR

42

Example: Specification

To solve the problem using the Petri net, we need to translate the questions “Can
the man bring everyone across the river without endangering the goat or the
cabbage? And if so, how?” into properties of the Petri net.

“Can the man bring everyone across the river?”

⇒ Is the marking {MR, WR, GR, CR} reachable from {ML, WL, GL, CL}?

“. . . without endangering the goat or the cabbage?”

⇒ We need to avoid states in which one of the eating transitions is enabled.

“How?”

⇒ Give a path that leads from one marking to the other. (Optionally: Find
shortest path.)

43

Example: Specification

To solve the problem using the Petri net, we need to translate the questions “Can
the man bring everyone across the river without endangering the goat or the
cabbage? And if so, how?” into properties of the Petri net.

“Can the man bring everyone across the river?”

⇒ Is the marking {MR, WR, GR, CR} reachable from {ML, WL, GL, CL}?

“. . . without endangering the goat or the cabbage?”

⇒ We need to avoid states in which one of the eating transitions is enabled.

“How?”

⇒ Give a path that leads from one marking to the other. (Optionally: Find
shortest path.)

44

Example: Specification

To solve the problem using the Petri net, we need to translate the questions “Can
the man bring everyone across the river without endangering the goat or the
cabbage? And if so, how?” into properties of the Petri net.

“Can the man bring everyone across the river?”

⇒ Is the marking {MR, WR, GR, CR} reachable from {ML, WL, GL, CL}?

“. . . without endangering the goat or the cabbage?”

⇒ We need to avoid states in which one of the eating transitions is enabled.

“How?”

⇒ Give a path that leads from one marking to the other. (Optionally: Find a
shortest path.)

45

Example: Specification

To solve the problem using the Petri net, we need to translate the questions “Can
the man bring everyone across the river without endangering the goat or the
cabbage? And if so, how?” into properties of the Petri net.

“Can the man bring everyone across the river?”

⇒ Is the marking {MR, WR, GR, CR} reachable from {ML, WL, GL, CL}?

“. . . without endangering the goat or the cabbage?”

⇒ We need to avoid states in which one of the eating transitions is enabled.

“How?”

⇒ Give a path that leads from one marking to the other. (Optionally: Find a
shortest path.)

46

Result

Constructing the reachability graph yields a graph with (at most) 36 nodes.

The marking {MR, WR, GR, CR} is reachable without enabling an “eating”
transition!

The transitions fired along a shortest path (there are two) are:

GLR (man and goat cross the river),
MRL (man goes back alone),
WLR (man and wolf cross the river),
GRL (man and goat go back),
CLR (man and cabbage cross the river),
MRL (man goes back alone),
GLR (man and goat cross the river).

47

Coverability Graph Method

As we have mentioned before, the reachability graph of P/T-net can be infinite (in
which case the algorithm for computing the reachability graph will not terminate).
For example, consider the following net.

t1 t2 t3

��
��

��
��

��
��p1 p2 p3

v v
? ? ?
6
�
�
���

�
�
���

We will show a method to find out whether the reachability graph of a P/T-net is
infinite or not. This can be done by using the coverability graph method.

48

ω-Markings

First we introduce a new symbol ω to represent “arbitrarily many” tokens.

We extend the arithmetic on natural numbers with ω as follows. For all n ∈ IN:
n + ω = ω + n = ω,
ω + ω = ω,
ω − n = ω,
0 · ω = 0, ω · ω = ω,
n ≥ 1 ⇒ n · ω = ω · n = ω,
n ≤ ω, and ω ≤ ω.

Note: ω − ω remains undefined, but we will not need it.

We will extend the notion of markings to ω-markings. In an ω-marking, each
place p will either have n ∈ IN tokens, or ω tokens (infinitely many).

49

Firing Rule and ω-markings

The firing condition and firing rule (reproduced below) neatly extend to
ω-markings with the extended arithmetic rules:

Firing condition:

Transition t ∈ T is M-enabled, written M
t−→, iff ∀p ∈ •t : M(p) ≥ W(p, t).

Firing rule:
An M-enabled transition t may fire, producing the successor marking M ′, where

∀p ∈ P : M ′(p) = M(p)− W̄(p, t) + W̄(t , p).

Basically, if a transition has a place with ω tokens in its preset, that place is
considered to have sufficiently many tokens for the transition to fire, regardless of
the arc weight.

If a place contains an ω-marking, then firing any transition connected with an arc
to that place will not change its marking.

50

Definition of Covering

An ω-marking M ′ covers an ω-marking M, denoted M ≤ M ′, iff

∀p ∈ P : M(p) ≤ M ′(p).

An ω-marking M ′ strictly covers an ω-marking M, denoted M < M ′, iff

M ≤ M ′ and M ′ 6= M.

51

Coverability and Transition Sequences (1/2)

Observation: Let M and M ′ be two markings such that M ≤ M ′.
Then for all transitions t , the following holds:

If M t−→ then M ′ t−→.

In other words, if M ′ has at least as many tokens as M has (on each place), then
M ′ enables at least the same transitions as M does.

This observation can be extended to sequences of transitions:

Define M
t1t2...tn−→ M ′ to denote:

∃M1, M2, . . . , Mn : M
t1−→ M1

t2−→ M2 · · ·
tn−→ Mn = M ′.

Now, if M
t1t2...tn−→ and M ≤ M ′, then M ′ t1t2...tn−→ .

52

Coverability and Transition Sequences (2/2)

Assume that M ′ ∈ reach(M) (with M < M ′). Then clearly there is some

sequence of transitions t1t2 . . . tn such that M
t1t2...tn−→ M ′. Thus, there is a

marking M ′′ with M ′ t1t2...tn−→ M ′′.

Let ∆M := M ′ − M (place-wise difference). Because M < M ′, the values of
∆M are non-negative and at least one value is non-zero.

Clearly, M ′′ = M ′ + ∆M = M + 2∆M.

M t1 t2 ... tn M’ t1 t2 ... tn M’’= =

∆Μ ∆Μ

Μ+∆Μ Μ+2∆Μ

...

=

...

53

By firing the transition sequence t1t2 . . . tn repeatedly we can “pump” an arbitrary
number of tokens to all the places having a non-zero marking in ∆M.

The basic idea for constructing the coverability graph is now to replace the
marking M ′ with a marking where all the places with non-zero tokens in ∆M are
replaced by ω.

54

Coverability Graph Algorithm (1/2)

COVERABILITY-GRAPH(〈P, T , F , W , M0〉)
1 〈V , E , v0〉 := 〈{M0}, ∅, M0〉;
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M from Work ;

5 Work := Work \ {M};
6 for t ∈ enabled(M)

7 do M ′ := fire(M, t);
8 M ′ := AddOmegas(M, t , M ′, V , E);

9 if M ′ /∈ V
10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {〈M, t , M ′〉};
13 return 〈V , E , v0〉;

The coverability graph al-
gorithm is almost exactly
the same as the reachability
graph algorithm, with the ad-
dition of the call to subroutine
AddOmegas(M, t , M ′, V , E),
where all the details w.r.t. cover-
ability graphs are contained. As
for the implementation of Work ,
the same comments as for the
reachability graph apply.

55

Coverability Graph Algorithm (2/2)

The following notations are used in the AddOmegas subroutine:

• M ′′ →E M iff 〈M ′′, t , M〉 ∈ E for some t ∈ T .

• M ′′ →E∗ M iff
∃n ≥ 0: ∃M0, M1, . . . , Mn : M ′′ = M0 →E M1 →E M2 →E · · · →E Mn = M.

ADDOMEGAS(M, t , M ′, V , E)

1 for M ′′ ∈ V
2 do if M ′′ < M ′ and M ′′ →E∗ M
3 then M ′ := M ′ + ((M ′ − M ′′) · ω);

4 return M ′;

Line 3 causes all places whose marking in M ′ is strictly larger than in the “parent”
M ′′ to contain ω, while markings of other places remain unchanged.

56

Coverability graph

Example

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0]

�
1

�
3

�
4

4 �
4

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 31 / 59

Coverability graph

Example

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0] [0 0 1 2]

�
2

�
1

�
3

�
4

4 �
4

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 32 / 59

Coverability graph

Example

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0] [0 0 1 2] [0 1 0 2]

�
2

�
3

�
1

�
3

�
4

4 �
4

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 33 / 59

Coverability graph

Example

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0] [0 0 1 2] [0 1 0 2]

�
2

�
3

�
1

�
3

�
4

4 �
4

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 34 / 59

Coverability graph

Example

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0] [0 0 1 2] [0 1 0 ω]

�
2

�
3

�
1

ω �
3

�
4

4 �
4

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 35 / 59

Coverability graph

Example

�
2

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0] [0 0 1 2] [0 1 0 ω] [0 0 1 ω]

�
2

�
3

�
1

�
3

�
4

4 �
4

[0 1 0 ω]
�

4

���ω

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 36 / 59

Coverability graph

Example

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0] [0 0 1 2] [0 1 0 ω] [0 0 1 ω] [0 1 0 ω]

�
2

�
3

�
2

�
3

�
1

ω �
3

�
4

4 �
4

[0 1 0 ω]
�

4

��� ���[0 0 1 ω]
�

4

���
Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 37 / 59

Coverability graph

Example

From the coverability tree we obtain the coverability graph.

�
2 �

1 �
3

�
2

�
1

2

[1 0 0 0] [0 1 0 0] [0 0 1 2] [0 1 0 ω] [0 0 1 ω] [0 1 0 ω]

�
2

�
3

�
2

�
3

[0 1 0 0] [0 0 1 2] [0 1 0 ω] [0 0 1 ω]

�
2

�
3

�
2 �
3

�
1

[1 0 0 0]

�
1

�
3

�
4

4 �
4 ���[0 1 0 ω]

�
4

���
[0 0 1 ω]

�
4

����
4

�
4

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 38 / 59

Coverability graph

Nodes of the coverability graph

In general a node of the coverability graph is ω-marking Mω ∈ (N ∪ {ω})m.

Definition (Set of markings represented by an ω-marking)

Given an ω-marking Mω we denote

M(Mω) = {M ∈ Nm | M(p) = Mω(p) if Mω(p) 6= ω}.

Ex1: Mω = [3 0 ω]T −→ M(Mω) = {[3 0 x]T | x ∈ N}.

Ex2: Mω = [3 0 1]T −→ M(Mω) = {[3 0 1]T}.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 40 / 59

Coverability graph

What does the coverability graph tell us?

Proposition

Given a marked net 〈N, M0〉 let G be its coverability graph with set of
nodes X constructed using the previous algorithm.

R(N,M0) ⊆
⋃

Mω∈X

M(Mω).

L(N, M0) ⊆ L(G).

Two main informations from the reachability graph

M is reachable =⇒ there exists in G a node Mω with M ∈M(Mω).

σ ∈ L(N,M0) =⇒ δ(M0, σ) is defined in G.

Note that the coverability graph provides a necessary but not sufficient
condition for marking reachability and existence of a firable sequence.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 41 / 59

Coverability graph

Example

�
4

�
4

�
2 �

1 �
3

�
2

�
1

2

[0 1 0 0] [0 0 1 2] [0 1 0 ω] [0 0 1 ω]

�
2

�
3

�
2 �
3

[1 0 0 0]

�
1

�
3

�
4

4 �
4

M = [0 1 1 0]T is not reachable: no Mω in G such that M ∈M(Mω).

M = [0 1 0 20]T is reachable: note that M ∈M([0 1 0 ω]T).

M = [0 1 0 21]T is not reachable even if M ∈M([0 1 0 ω]T) (always
even number of tokens in p4).

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 42 / 59

Coverability graph

Example

�
4

�
4

�
2 �

1 �
3

�
2

�
1

2

[0 1 0 0] [0 0 1 2] [0 1 0 ω] [0 0 1 ω]

�
2

�
3

�
2 �
3

[1 0 0 0]

�
1

�
3

�
4

4 �
4

t1t2t4 is not a firing sequence: δ(M0, t1t2t4) is not defined in G.

t1t2t3 is a firing sequence: note that δ(M0, t1t2t3) is defined in G.

t1t2t3t4 is not a firing sequence even if δ(M0, t1t2t3t4) is defined in G.
Transition t4 needs 4 tokens to fire, hence t2 must fire at least twice.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 43 / 59

Coverability graph

Boundeness

Place p if unbounded ⇐⇒ there exists in G a node Mω with
Mω(p) = ω.

Place p is kp bounded ⇐⇒ kp = max{Mω(p)} for all Mω in G.

�
4

�
4

�
2 �

1 �
3

�
2

�
1

2

[0 1 0 0] [0 0 1 2] [0 1 0 ω] [0 0 1 ω]

�
2

�
3

�
2 �
3

[1 0 0 0]

�
1

�
3

�
4

4 �
4

Example

Places p1, p2, p3 are 1-bounded.

Place p3 is unbounded.

The coverability graph provides a necessary and sufficient condition for
boundedness.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 44 / 59

Coverability graph

Liveness

A transition t is quasi-live ⇐⇒ an arc t appears in the graph.

A transition t is live =⇒ an arc t appears in all ergodic components.

[1] [ω]

�
1

�
1,

�
2

E

T

�
1 �

2
�

1

2

2 �
1

�
2

�
1

2

Example

Two different nets with the same coverability graph: all transitions
are quasi-live in both nets.

The necessary condition for liveness is satisfied but in the first net no
transition is live, while the second net is live.

The coverability graph provides a necessary and sufficient condition for
quasi-liveness but only a necessary condition for liveness.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 45 / 59

Coverability graph

Reversibility

〈N,M0〉 is reversible =⇒ a marking Mω such that M0 ∈M(Mω)
appears in all ergodic components of the graph.

�
1 �
2

�
1

�
2

�
3 �

3

�
3

[0 1 0] [1 0 0] [0 1 ω]

�
2

�
1

�
2

�
3

[1 0 ω] �
1

E T T

Example

Two nets (with/without t3): the necessary condition for reversibility
is satisfied for both but the net with t3 is reversible, the net without
t3 is not.

The coverability graph provides only a necessary condition for reversibility.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 46 / 59

Coverability graph

Are these properties decidable?

If a net is bounded, marking reachability and all other properties are
decidable by analysis of the reachability graph.

If a net is unbounded, the coverability graph does not provide a test for
marking reachability, liveness and reversibility.

Are these properties decidable for unbounded nets with some other
procedure?

The answer is yes: it follows from the decidability of marking reachability
that was proved by Kosaraju (1982).

However the procedure (and the proof) is rather complicated. If interested
read: C. Reutenauer, The Mathematics of Petri Nets, Prentice Hall, 1990.

Alessandro Giua (DIEE, Univ. of Cagliari) Reachability and languages in PNs 07/05/2011 47 / 59

Termination of the Coverability Graph Algorithm (1/2)

Dickson’s lemma : Every infinite sequence u1u2 . . . of n-tuples of natural
numbers contains an infinite subsequence ui1 ≤ ui2 ≤ ui3 ≤

Proof : By induction on n.

Base: n = 1. Let ui1 be the smallest of u1u2 . . ., let ui2 be the smallest of
ui1+1ui1+2 . . . etc.

Step: n > 1. Consider the projections v1v2 . . . and w1w2 . . . of u1u2 . . . onto the
first n − 1 components and the last component, respectively. By induction
hypothesis, there is an infinite subsequence vj1 ≤ vj2 ≤ vj3 ≤
Consider the infinite sequence wj1 ≤ wj2 ≤ By induction hypothesis, this
sequence has an infinite subsequence wi1 ≤ wi2 ≤ So we have
ui1 ≤ ui2 ≤ ui3 ≤

57

Termination of the Coverability Graph Algorithm (2/2)

Theorem: The Coverability Graph Algorithm terminates.

Proof : Assume that the algorithm does not terminate. We derive a contradiction.

If the algorithm does not terminate, then the Coverability Graph is infinite. Since
every node of the graph has at most |T | successors, the graph contains an
infinite path Π = M1M2

If an ω-marking Mi of Π satisfies Mi(p) = ω for some place p, then
Mi+1(p) = Mi+2(p) = . . . = ω.

So Π contains an ω marking Mj such that all markings Mj+1, Mj+2, . . . have ω’s
at exactly the same places as Mj . Let Π′ be the suffix of Π starting at Mj .

Consider the projection Π′′ = mjmj+1 . . . of Π′ onto the non-ω places. Let n be
the number of non-ω places. Π′′ is an infinite sequence of distinct n-tuples of
natural numbers.

By Dickson’s lemma, this sequence contains markings Mk , Ml such that k < l
and Mk ≤ Ml . This is a contradiction, because, since Mk 6= Ml , when executing
AddOmegas(Ml−1, t , Ml , V , E) the algorithm adds at least one ω to Ml

58

Remarks on the Coverability Graph Algorithm

If the reachability graph is finite, the algorithm AddOmegas(M, t , M ′, V , E) will
always return M ′ as its output (i.e., the third parameter).

In this case the coverability graph algorithm will return the reachability graph (but
it will run more slowly).

Implementations of the algorithm are bound to be slow because of the for loop in
AddOmegas, which has to traverse the potentially large size of the graph.

The result of the algorithm is not unique, e.g. it depends on the implementation
of Work and on the exact order of fired transitions on line 5 of the main routine.

59

Example 1: Coverability Graph

Recall the P/T-net example given in the previous lecture:

t1 t2 t3

��
��

��
��

��
��p1 p2 p3

v v
? ? ?
6
�
�
���

�
�
���

We will now compute the coverability graph for it.

60

Example 1: Coverability Graph

t2 t1

t3t1

t1

t1

t3

t3

t2 t1

<1,0,1>

<1,0,0>

t2

<1,ω,1>

<1,ω,ω> <1,ω,0>

61

Example 2

Consider the following P/T-net. We will now compute a coverability graph for it.

t4

p4

p1

t1

p2 t3

p3t2

62

Example 2: Coverability graph

<1,0,0,0>

t1 t2

t2

t3

t1

t2

t4

t1

t3

<0,0,1,0><1,ω,0,0>

<0,ω,1,0>

<0,ω,1,ω> <1,ω,0,ω>

63

Reachability and coverability graphs: Comparison (1)

Let N = 〈P, T , F , W , M0〉 be a net.

The reachability graph has the following fundamental property:

A marking M of N is reachable if and only if M is a vertex of the
reachability graph of N.

The coverability graph has the following fundamental property:

If a marking M of N is reachable, then M is covered by some vertex of the
coverability graph of N.

Notice that the first property is an equivalence, the second one an implication!

64

More specifically, the reverse implication does not hold: A marking that is
covered by some vertex of the coverability graph is not necessarily reachable, as
shown by the following example:

t1

1 3

<1>

<ω>

t1

t1

In the net, only markings with an odd number of tokens are reachable, but
markings with an even number of tokens are also covered.

65

Reachability and coverability graphs: Comparison (2)

The reachability graph captures exact information about the reachable markings
(but its computation may not terminate).

The coverability graph computes an overapproximation
(but remains exact as long as the number of markings is finite).

66

Summary: Which properties can we check so far?

Reachability: Given some marking M and a net N, is M reachable in N?
More generally: Given a set of markings M, is some marking of M reachable?

Application: This is often used to check whether some ‘bad’ state can occur
(classical example: violation of mutual exclusion property) if M is taken to be the
set of ‘error’ states. Sometimes (as in the man/wolf/etc example), this analysis
can check for the existence of a solution to some problem.

Using the reachability graph: Exact answer is obtained.

Using the coverability graph: Approximate answer. When looking for ‘bad’ states,
this analysis is safe in the sense that bad states will not be missed, but the graph
may indicate ‘spurious’ errors.

67

Summary (cont’d)

Finding paths: Given a reachable marking M, find a firing sequence that leads
from M0 to M.

Application: Used to supplement reachability queries. If M represents an error
state, the firing sequence can be useful for debugging. When solving puzzles,
the path represents actions leading to the solution.

Using the reachability graph: Find a path from M0 to M in the graph, obtain
sequence from edge labels.

Using the coverability graph: Not so suitable – edges may represent ‘shortcuts’
(unspecified repetitions of some loop).

68

Summary (cont’d)

Enabledness: Given some transition t , is there a reachable marking in which t is
enabled?
(Sometimes, t is called dead if the answer is no. Actually, this is a special case of
reachability.)

Application: Check whether some ‘bad’ action is possible. Also, is some
desirable action is never enabled, a ‘no’ answer is an indication of some problem
with the model.
In some Petri-net tools, checking for enabledness is easier to specify than
checking for reachability. In that case, reachability queries can be framed as
enabledness queries by adding ‘artificial’ transitions that can fire iff a given
marking is reachable.

Using the reachability graph: Check whether there is an edge labeled with t .

Using the coverability graph: ?

69

Summary (cont’d)

Deadlocks: Given a net N, is N deadlock-free?

A marking M of a Place/Transition net N = 〈P, T , F , W , M0〉 is called a
deadlock if no transition t ∈ T is enabled in M. A net N is deadlock-free if no
reachable marking is a deadlock

Application: Deadlocks tend to indicate errors (classical example: philosophers
may starve).

Using the reachability graph: Check whether there is a vertex without an
outgoing edge.

70

Using the coverability graph: Unsuitable – the graph may miss deadlocks!

<1>

<ω>

t1

t2t1t1

1 2

t2

2

<1>

<0>

<2>
t1

t2 t1
...

71

Summary (cont’d)

Boundedness: Given a net N, is there a constant k such that N is k -safe?
Otherwise, which places can assume an unbounded number of tokens?

Application: If tokens represent available resources, unbounded numbers of
tokens may indicate some problem (e.g. a resource leak). Also, this property
should be checked before computing the reachability graph!

Using the reachability graph: Unsuitable, computation may not terminate.

Using the coverability graph:

A place p can assume an unbounded number of tokens iff the coverability
graph contains a vertex M where M(p) = ω.
Iff no vertex with an ω exists, then the net is k -safe, where k is the largest
natural number in a marking of the graph.

72

What is missing? (Outlook)

Sometimes, properties mentioned in the summary can be checked even without
constructing the reachability graph (which can be pretty large, after all).

Methods for doing this are collectively called structural analyses

So far, we have not learnt how to express (and check) properties like these:

Marking M can be reached infinitely often.

Whenever transition t occurs, transition t ′ occurs later.

No marking with some property x occurs before some marking with property y has occurred.

Properties like these can be expressed using temporal logic.

73

Structural analysis of P/T nets

74

Structural analysis of P/T nets

75

Structural Analysis: Motivation

We have seen how properties of Petri nets can be proved by constructing the
reachability graph and analysing it.

However, the reachability graph may become huge: exponential in the number of
places (if it is finite at all).

Structural analysis makes it possible to prove some properties without
constructing the reachability graph. The main techniques are:

Place invariants

Traps

76

Example 1

p4

p5

p7

p6p1

p2

p3 t4t1

t2

t3 t5

t6

77

Incidence Matrix: Definition

Let N = 〈P, T , F , W , M0〉 be a P/T net. The corresponding incidence matrix
CN : P × T → Z is the matrix whose rows correspond to places and whose
columns correspond to transitions. Column t ∈ T denotes how the firing of t
affects the marking of the net: C(t , p) = W(t , p)− W(p, t).

The incidence matrix of the example from the previous slide:

t1 t2 t3 t4 t5 t6

−1 0 1 0 0 0

1 −1 0 0 0 0

0 1 −1 0 0 0

0 −1 1 0 −1 1

0 0 0 −1 0 1

0 0 0 1 −1 0

0 0 0 0 1 −1



p1

p2

p3

p4

p5

p6

p7

78

Markings as vectors

Let us now write marking as column vectors. E.g., the initial marking is
M0 = (1 0 0 1 1 0 0)T .

Likewise, we can write firing counts as column vectors with one entry for each
transition. E.g., if t1, t2, and t4 are to fire once each, we can express this with
u = (1 1 0 1 0 0)T .

Then, the result of firing these transitions can be computed as M0 + C · u.

1

0

0

1

1

0

0


+



−1 0 1 0 0 0

1 −1 0 0 0 0

0 1 −1 0 0 0

0 −1 1 0 −1 1

0 0 0 −1 0 1

0 0 0 1 −1 0

0 0 0 0 1 −1


·



1

1

0

1

0

0


=



0

0

1

0

0

1

0



79

Caveat

Notice: Bi-directional arcs (an arc from a place to a transition and back) cancel
each other out in the matrix!

Thus, when a marking arises as the result of a matrix equation (like on the
previous slide), this does not guarantee that the marking is reachable!

I.e., the markings obtained by the incidence markings are an over-approximation
of the actual reachable markings (compare coverability graphs. . .).

However, we can sometimes use the matrix equations to show that a marking M
is unreachable, i.e. if M0 + Cu = M has no natural solution for u.

Note: When we are talking about natural (integral) solutions of equations, we
mean those whose components are natural (integral) numbers.

80

Example 2

Consider the following net and the marking M = (1 1)T .

p2

p1 t1

t2

1

0

 +

−1 1

1 −1

 ·

u1

u2

 =

1

1



has no solution, and therefore M is not reachable.

81

Invariants

The solutions of the equation Cu = 0 are called transition invariants (or:
T-invariants). The natural solutions indicate (possible) loops.

For instance, in Example 2, u = (1 1)T is a T-invariant.

The solutions of the equation CT x = 0 are called place invariants (or:
P-invariants). A proper P-invariant is a solution of CT x = 0 if x 6= 0.

For instance, in Example 1, x1 = (1 1 1 0 0 0 0)T , x2 = (0 0 1 1 0 0 1)T ,
and x3 = (0 0 0 0 1 1 1)T are all (proper) P-invariants.

A P-invariant indicates that the number of tokens in all reachable markings
satisfies some linear invariant (see next slide).

82

Properties of P-invariants

Let M be marking reachable with a transition sequence whose firing count is
expressed by u, i.e. M = M0 + Cu. Let x be a P-invariant. Then, the following
holds:

MT x = (M0 + Cu)T x = MT
0 x + (Cu)T x = MT

0 x + uT CT x = MT
0 x

For instance, invariant x2 means that all reachable markings M satisfy (reverting
back to the function notation for markings):

M(p3) + M(p4) + M(p7) = M0(p3) + M0(p4) + M0(p7) = 1 (1)

As a consequence, a P-invariant in which all entries are either 0 or 1 indicates a
set of places in which the number of tokens remains unchanged in all reachable
markings.

83

Note that multiplying an invariant by a constant or component-wise addition of
two invariants will again yield a P-invariant. That is, the set of all invariants is a
vector space.

We can use P-invariants to prove mutual exclusion properties:

According to equation 1, in every reachable marking of Example 1 exactly
one of the places p3, p4, and p7 is marked. In particular, p3 and p7 cannot be
marked concurrently!

Another example: Mutual exclusion with token passing (demo)

84

More remarks on P-invariants

P-invariants can also be useful as a pre-processing step for reachability analysis.

Suppose that when computing the reachability graph, the marking of a place is
normally represented with n bits of storage. E.g. the places p3, p4, and p7

together would require 3n bits.

However, as we have discovered invariant x2, we know that exactly one of the
three places is marked in each reachable marking.

Thus, we just need to store in each marking which of the three is marked, which
required just 2 bits.

85

Algorithms for P-invariants

A basis of the set of all invariants can be computed using linear algebra.

There is an algorithm called “Farkas Algorithm” (by J. Farkas, 1902) to compute
a set of so called minimal P-invariants (see the enxt slides). These are positive
place invariants from which any other positive invariant can be computed by a
linear combination.

Unfortunately there are P/T-nets with an exponential number of minimal
P-invariants (in the number of places of the net). Thus the Farkas algorithm
needs (at least) exponential time in the worst case.

The INA tool of the group of Peter Starke (Humboldt University of Berlin)
contains a large number of algorithms for structural analysis of P/T-nets,
including invariant generation.

86

Farkas Algorithm

Input: the incidence matrix C with n rows (places), and m columns (transitions).

(C | En) denotes the augmentation of C by a n × n identity matrix (last n
columns).

87

D0 := (C | En);
for i := 1 to m do

for d1, d2 rows in Di−1 such that d1(i) and d2(i) have opposite signs do
d := |d2(i)| · d1 + |d1(i)| · d2; (* d(i) = 0 *)
d ′ := d/gcd(d(1), d(2), . . . , d(m + n));
augment Di−1 with d ′ as last row;

endfor ;
delete all rows of the (augmented) matrix Di−1 whose i-th component

is different from 0, the result is Di ;
endfor ;
delete the first m columns of Dm

88

An example

Incidence matrix

C =



−1 1 1 −1

1 −1 −1 1

0 0 1 0

1 0 0 −1

−1 0 0 1



D0 = (C | E5) =



−1 1 1 −1 1 0 0 0 0

1 −1 −1 1 0 1 0 0 0

0 0 1 0 0 0 1 0 0

1 0 0 −1 0 0 0 1 0

−1 0 0 1 0 0 0 0 1



89

Addition of the rows 1 and 2, 1 and 4, 2 and 5, 4 and 5:

D1 =



0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0

0 1 1 −2 1 0 0 1 0

0 −1 −1 2 0 1 0 0 1

0 0 0 0 0 0 0 1 1


Addition of rows 3 und 4:

D2 =


0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 1 1


90

D3 = D4 =


0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 1 1



Minimal P-invariants are (1,1,0,0,0) and (0,0,0,1,1).

91

Quick recap The algorithm References

Biological interpretations

A P-invariant can be regarded as a token conservation component.

Since in the biological interpretation the token represent molecules
(or levels of concentration) this means that a P-invariant represents
conservation of mass.

A T-invariant identifies a set of transition firings which can return
the net to the same marking.

In the biological interpretation a feasible T-invariant identifies a set
of reactions which may return a process to a given state and
understanding this may provide insight into the behaviour.

Moreover, if the system has a steady state behaviour (e.g. a
metabolic network) then the T-invariant gives relative occurrence
rates for the reactions involved.

An example with many P-invariants

Incidence matrix for a net with 2n places:

C =



−1 0 0 0 1

−1 0 0 0 1

1 −1 0 · · · 0 0

1 −1 0 0 0
...

0 0 0 · · · 1 −1

0 0 0 · · · 1 −1


(y1,1− y1, y2,1− y2, . . . , yn,1− yn) is an invariant for every
y1, y2, . . . , yn ∈ {0,1}, and so there are 2n minimal P-invariants.

This example shows that the number of minimal P-invariants can be exponential
in the size of the net. So Farkas algorithm may need exponential time.

92

Example 3

Consider the following attempt at a mutual exlusion algorithm for cr1 and cr2:

t1

t3
q1

pend1
t2

cr1
nc1

nc2
t4

t5

t6
q2

pend2

cr2

The idea is to achieve mutual exclusion by entering the critical section only if the
other process is not already there.

93

Thus, we want to prove that in all reachable markings M:

M(cr1) + M(cr2) ≤ 1

The P-invariants we can derive in the net yield:

M(q1) + M(pend1) + M(cr1) = 1 (2)

M(q2) + M(pend2) + M(cr2) = 1 (3)

M(cr1) + M(nc1) = 1 (4)

M(cr2) + M(nc2) = 1 (5)

But try as we might, we cannot show the desired property just with these four
equations!

94

Traps

Definition: Let 〈P, T , F , W , M0〉 be a P/T net.
A trap is a set of places S ⊆ P such that S• ⊆ •S.

In other words, each transition which removes tokens from a trap must also put
at least one token back to the trap.

A trap S is called marked in marking M iff for at least one place s ∈ S it holds
that M(s) ≥ 1.

Note: If a trap S is marked in M0, then it is also marked in all reachable markings.

95

In Example 3, S1 = {nc1, nc2} is a trap.

The only transitions that remove tokens from this set are t2 and t5. However,
both also add new tokens to S1.

S1 is marked initially and therefore in all reachable markings M. Thus:

M(nc1) + M(nc2) ≥ 1 (6)

Traps can be useful in combination with place invariants to recapture information
lost in the incidence matrix due to the cancellation of self-loop arcs.

Here: Adding (4) and (5) and subtracting (6) yields M(cr1) + M(cr2) ≤ 1, which
proves the mutual exclusion property.

96

Petri nets: Simple Reactions

1 A −−→ B

2 A −−⇀↽−− B

3 A
E
−→ B

k
1

k
2

A Bk
1A B k

1
, k

2A B

k
1

k
2

A B

E

k
1A B

E

k
1

, k
2A B

E

1 / 18

Petri nets: Enzyme Reactions

k
1

k
2

k’
3

k’
2

k’
1

E

B*EA*EA B

k
1

k
2

k
3A B

E

A*E

k
1

k
2

k’
2

k’
1

k’
3

k’
4

E

B*EA*EA B

A+ E
k
1

−−⇀↽−−
k2

A·E

A·E
k3
−→ B+ E

A+ E
k
1

−−⇀↽−−
k2

A·E

A·E
k
′

3
−→ B·E

B·E
k

′

1

−−⇀↽−−

k′2

B+ E

A+ E
k
1

−−⇀↽−−
k2

A·E

A·E
k

′

3

−−⇀↽−−

k′4

B·E

B·E
k

′

1

−−⇀↽−−

k′2

B+ E

2 / 18

Petri nets: Incidence Matrix

The incidence matrix coinsides for metabolic networks with the

stoichiometric matrix.

2C
r1
−→ A+ 2B

3A+ 2B
r2
−→ 2D + 2E

3D+ 3E
r3
−→ 3A+ 3C













r
1

r
2

r
3

A 1 −3 3

B 2 −2 0

C −2 0 3

D 0 2 −3

E 0 2 −3













3

3

3

3

3

22

2

2

2

1

6

6

r1

r2 r3

3 / 18

4 / 18

5 / 18

6 / 18

7 / 18

8 / 18

9 / 18

10 / 18

11 / 18

12 / 18

13 / 18

14 / 18

15 / 18

16 / 18

17 / 18

A Self-Initiating Solution

r_0, 2(f)

r_2, 2(f)

r_2, 2(f)

r_8, 1(f)

r_1, 1(f)

r_3, 2(f)

r_7, 1(f)

r_9, 1(f)

A NON-Self-Initiating Solution

r_3, 2(f)

r_2, 4(f)

r_8, 1(f)

r_1, 1(f)

r_7, 1(f)

r_2, 2(f)

r_0, 2(f)
r_9, 1(f)

Complexity Questions

When is the minimal number of tokens to make the goal marking
reachable?
→ PSPACE-hard

1 / 9

Complexity Questions

How to classify solutions of the ILP-approach for generative
chemistries?

2 / 9

Complexity Questions (Esparaza article)

3 / 9

Complexity Questions

4 / 9

Complexity Questions

5 / 9

Complexity Questions
Is there a reachable marking which marks a given place?

6 / 9

Complexity Questions
Is there a reachable marking which marks a given place?

7 / 9

Complexity Questions

8 / 9

Complexity Questions

9 / 9

