ANALYTIC COMBINATORICS

PART TWO

http://ac.cs.princeton.edu

Analytic combinatorics overview

Attention: Much of this lecture is a quick review of material in Analytic Combinatorics, Part I

One consequence: it is a bit longer than usual

To: Students who took Analytic Combinatorics, Part I

Bored because you understand it all?

GREAT! Skip to the section on labelled trees and do the exercises.

To: Students starting with Analytic Combinatorics, Part II

Moving too fast? Want to see details and motivating applications?

No problem, watch Lectures 5, 7, and 9 in Part I.

Labelled combinatorial classes

have objects composed of N atoms, labelled with the integers 1 through N.

Ex. Different unlabelled objects

Ex. Different labelled objects

Labelled class example: cycles

Q. How many *cycles* of labelled atoms?

Labelled class example 2: pairs of cycles

Q. How many *unordered pairs* of labeled cycles of size N?

Basic definitions (labelled classes)

Def. A set of *N* atoms is said to be *labelled* if they can be distinguished from one another. Wlog, we use labels 1 through *N* to refer to them.

Def. A *labelled combinatorial class* is a set of combinatorial objects built from labelled atoms and an associated *size* function.

With the symbolic method, we specify the class and at the same time characterize the EGF

Basic labelled class 1: urns

Def. An *urn* is a set of labelled atoms.

 $U_2 = 1$

counting sequence	EGF
$U_N = 1$	e ^z

$$\sum_{N\geq 0} \frac{z^N}{N!} = e^z$$

Basic labelled class 2: permutations

Def. A *permutation* is a sequence of labelled atoms.

Basic labelled class 3: cycles

Def. A *cycle* is a cyclic sequence of labelled atoms

Labelled ("star") product operation for labelled classes

is the analog to the Cartesian product for unlabelled classes

Def. Given two labelled combinatorial classes A and B, their *labelled product* $A \star B$ is a set of ordered pairs of copies of objects, one from A and one from B, *relabelled in all consistent ways*.

Labelled ("star") product operation for labelled classes

Combinatorial constructions for labelled classes

construction	notation	semantics	
disjoint union	A + B	disjoint copies of objects from A and B	
labelled product	A ★ B	ordered pairs of copies of objects, one from A and one from B relabelled in all consistent ways	A and B are combinatorial classes of labelled objects
sequence	SEQ(A)	sequences of objects from A	
set	SET(A)	sets of objects from A	
cycle	CYC(A)	cyclic sequences of objects from A	

The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction	notation	semantics	EGF
disjoint union	A + B	disjoint copies of objects from A and B	A(z) + B(z)
labelled product	$A \star B$	ordered pairs of copies of objects, one from A and one from B	A(z)B(z)
	$SEQ_k(A)$ or A^k	k- sequences of objects from A	$A(z)^k$
sequence	SEQ(A)	sequences of objects from A	$\frac{1}{1 - A(z)}$
	$SET_k(A)$	k-sets of objects from A	$A(z)^k/k!$
set	SET(A)	sets of objects from A	$e^{A(z)}$
	$CYC_k(A)$	k-cycles of objects from A	$A(z)^k/k$
cycle	CYC(A)	cycles of objects from A	$\ln \frac{1}{1 - A(z)}$

In-class exercise

Check the star-product transfer theorem for a small example.

$$A(z) = 10\frac{z^5}{5!} = \frac{z^5}{12}$$

= B(z)C(z) \checkmark

18

The symbolic method for labelled classes: basic constructions

	urns	cycles	permutations				
					construction	notation	EGF
construction	U = SET(Z)	Y = CYC(Z)	P = SEQ(Z)		disjoint union	A + B	A(z) + B(z)
					labelled product	A ★ B	A(z)B(z)
example	(2)	3 2	(1)(2)(3)(4)			SEQ_k (A)	$A(z)^k$
						SEQ(A)	$\frac{1}{1 - A(z)}$
EGF	$U(z) = e^{z}$	$Y(z) = \ln \frac{1}{2}$	$P(z) = \frac{1}{2}$		cot	$SET_k(A)$	$A(z)^k/k!$
	O(Z) = C	1 - z	1 - z		set	SET(A)	$e^{A(z)}$
						$CYC_k(A)$	$A(z)^k/k$
counting sequence	$U_{N} = 1$	$Y_N = (N-1)!$	$P_N = N!$		cycle	CYC(A)	$\ln \frac{1}{1 - A(z)}$

Proofs of transfers

are immediate from GF counting

A + B

$$\sum_{\gamma \in A+B} \frac{z^{|\gamma|}}{|\gamma|!} = \sum_{\alpha \in A} \frac{z^{|\alpha|}}{|\alpha|!} + \sum_{\beta \in B} \frac{z^{|\beta|}}{|\beta|!} = A(z) + B(z)$$

$$A \star B$$

$$\sum_{\gamma \in \mathcal{A} \times \mathcal{B}} \frac{z^{|\gamma|}}{|\gamma|!} = \sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} \binom{|\alpha| + |\beta|}{|\alpha|} \frac{z^{|\alpha| + |\beta|}}{(|\alpha| + |\beta|)!} = \left(\sum_{\alpha \in \mathcal{A}} \frac{z^{|\alpha|}}{|\alpha|!}\right) \left(\sum_{\beta \in \mathcal{B}} \frac{z^{|\beta|}}{|\beta|!}\right) = A(z)B(z)$$

Proofs of transfers

are immediate from GF counting

class	construction	EGF
k-sequence	SEQ _k (A)	$A(z)^k$
sequence	$SEQ_k(A) = SEQ_0(A) + SEQ_1(A) + SEQ_2(A) + \dots$	$1 + A(z) + A(z)^{2} + A(z)^{3} + \ldots = \frac{1}{1 - A(z)}$
k-cycle	$CYC_k(A)$	$\frac{A(z)^k}{k}$
cycle	$CYC_k(A) = CYC_0(A) + CYC_1(A) + CYC_2(A) + \dots$	$1 + \frac{A(z)}{1} + \frac{A(z)^2}{2} + \frac{A(z)^3}{3} + \ldots = \ln \frac{1}{1 - A(z)}$
k-set	$SET_k(A)$	$\frac{A(z)^k}{k!}$
set	$SET_k(A) = SET_0(A) + SET_1(A) + SET_2(A) + \dots$	$1 + \frac{A(z)}{1!} + \frac{A(z)^2}{2!} + \frac{A(z)^3}{3!} + \ldots = e^{A(z)}$

A standard paradigm for analytic combinatorics

Fundamental constructs

- •elementary or trivial
- confirm intuition

Compound constructs

- many possibilities
- classical combinatorial objects
- expose underlying structure

Variations

- unlimited possibilities
- *not* easily analyzed otherwise

A combinatorial bijection

[from AC Part I Lecture 5]

A permutation is a set of cycles.

Standard representation

Set of cycles representation

23

Enumerating permutations

How many permutations of length *N*?

Construction	P = SEQ(Z)	"A permutation is a sequence of	labelled atoms"
EGF equation	$P(z) = \frac{1}{1-z}$		
Counting sequence	$P_N = N![z^N]P(z) = N!$		

How many sets of cycles of length N?

Construction	$P^* = SET(CYC(Z))$	"A permutation is a set of cycles"
Construction		
EGF equation	$P^*(z) = \exp\left(\ln\frac{1}{1-z}\right) = \frac{1}{1-z}$	
Counting sequence	$P_N^* = N![z^N]P^*(z) = N!$	

Derangements

A group of *N* graduating seniors each throw their hats in the air akroom. and each catch a random hat.

Q. What is the probability that nobody gets their own hat back?

Definition. A derangement is a permutation with no singleton cycles

Enumerating derangements

[from AC Part I Lecture 5]

How	many permutations of	flength N?	
	Construction	$P^* = SET(CYC(Z))$	"A permutation is a set of cycles"
	EGF equation	$P^*(z) = \exp\left(\ln\frac{1}{1-z}\right) = \frac{1}{1-z}$	
	Counting sequence	$P_N^* = N![z^N]P^*(z) = N!$	

How many derangements of length *N*?

Construction
$$D = SET(CYC_{>1}(Z))$$
Derangements are permutations
with no singleton cycles"EGF equation $D(z) = e^{z^2/2 + z^3/3 + z^4/4 + \dots} = \exp\left(\ln\frac{1}{1-z} - z\right) = \frac{e^{-z}}{1-z}$ Expansion $[z^N]D(z) \equiv \frac{D_N}{N!} = \sum_{0 \le k \le N} \frac{(-1)^k}{k!} \sim \frac{1}{e}$

26

Derangements

A group of *N* graduating seniors each throw their hats in the air and each catch a random hat.

Q. What is the probability that nobody gets their own hat back?

A.
$$\frac{1}{e} \doteq 0.36788$$

How many permutations of length N have no cycles of length $\leq M$ (generalized derangements)?

Construction
$$D_M = SET(CYC_{>M}(Z))$$
 "Derangements are permutations
whose cycle lengths are all > M"
OGF equation $D_M(z) = e^{\frac{z^{M+1}}{M+1} + \frac{z^{M+2}}{M+2} + \cdots} = \exp\left(\ln\frac{1}{1-z} - z - z^2/2 - \cdots - z^M/M\right)$
 $= \frac{e^{-z - \frac{z^2}{2} - \frac{z^3}{3} - \cdots - \frac{z^M}{M}}}{1-z}$

How many permutations of length *N* have no cycles of length > 2 (*involutions*)?

Construction	$I = SET(CYC_{1,2}(Z))$	"Involutions are permutations whose cycle lengths are all 1 or 2"
OGF equation	$I(z) = e^{z + z^2/2}$	

Standard paradigm example: permutations

DERANGEMENTS (no singleton cycle) $D = SET(CYC_{>1}(Z))$

$$D(z) = \frac{e^{-z}}{1-z}$$

PERMUTATIONS with *M* cycles $P_M = SET_M(CYC(Z))$ $P_M(z) = \frac{1}{M!} \left(\ln \frac{1}{1-z} \right)^M$

INVOLUTIONS (cycle lengths 1 or 2) $I = SET(CYC_{1,2}(Z))$

 $I(z) = e^{z + z^2/2}$

PERMUTATIONS P = SET(CYC(Z)) $P(z) = e^{\ln \frac{1}{1-z}} = \frac{1}{1-z}$

GENERALIZED INVOLUTIONS (no cycle length > r) $I_{\leq r} = SET (CYC_{\leq r}(Z))$

 $I_{\leq r}(z) = e^{z+z^2/2+...+z^r/r}$

GENERALIZED DERANGEMENTS (all cycle lengths > r) $D_{r} = SET (CYC_{\leq r}(Z))$

$$D_{>r}(z) = \frac{e^{-z - z^2/2 - \dots - z^r/r}}{1 - z}$$

PERMUTATIONS with *arbitrary* cycle length constraints $P_{\Omega} = SET_{\Omega}(CYC(Z))$

 $P_{\Omega}(z) = e^{\sum_{k \in \Omega} z^k / k}$

Words and strings

A string is a sequence of N characters (from an M-char alphabet). There are M^N strings.

A word is a sequence of *M* labelled sets (having *N* objects in total). There are M^N words.

Тур	ic	al	S	tr	in	g													
	2		4		2	2		4		5		5		1	L		2		5
Тур	ic	al	W	/0	orc	1													
	{	7	}	{	1	8	3	}	{	}	{	2	4	}	{	5	6	9	}

Correspondence

- For each *i* in the *k*th set in the word set the *i*th char in the string to *k*.
- If the *i*th char in the string is *k*, put *i* into the *k*th set in the word.
- Q. What is the difference between strings and words?
- A. Only the point of view (sequence of characters vs. sets of indices).

Balls and urns

Balls-and-urns sequences are equivalent to strings and words

Corresponding string	2	5	1	5	1	1	4	4	3
Corresponding word	{ 3	56	} { 1	L}{	9	{ 7	8 }	{ 2 4	4 }

Words

Def. A *word* is a sequence of *M* urns holding *N* objects in total.

"throw N balls into M urns" Q. How many words ? Atom class size W_M , the class of *M*-sequences of urns type GF Class labelled atom Ζ 1 Ζ |w|, the number of objects in w Size $W_M(z) = \sum_{w \in W_M} \frac{z^{|w|}}{|w|!} = \sum_{N \ge 0} W_{MN} \frac{z^N}{N!}$ {7}{183}{}24}{569} Example EGF 5 φ $W_M = SEQ_M(SET(Z))$ Construction 6 $W_M(z) = (e^z)^M = e^{Mz}$ **OGF** equation $\overline{7}$ $N![z^N]W_M(z) = M^N$ Counting sequence 2 4 5 5 2 5 1 2 4

Strings and Words (summary)

class	type	GF type	example	AC enumeration	prototypical AofA application
STRING	unlabelled	OGF	2 4 2 4 5 5 1 2 5	$S = SEQ(Z_1 + \dots + Z_M)$ $S(z) = \frac{1}{1 - Mz}$ $S_{MN} = M^N$	string search
WORD	labelled	EGF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$W_M = SEQ_M(SET(Z))$ $W_M(z) = e^{Mz}$ $W_{MN} = M^N$	hashing

Variations on words: occupancy restrictions

Def. A *birthday sequence* is a word where no letter appears twice.

Def. A coupon collector sequence is a word where every letter appears at least once.

Birthday sequences (M-words with no duplicates)

 B_M , the class of birthday sequences

EGF $B_M(z) = \sum_{w \in B_M} \frac{z^{|w|}}{|w|!} = \sum_{N \ge 0} B_{MN} \frac{z^N}{N!}$

Def. A *birthday sequence* is a word where no set has more than one element.

Q. How many birthday sequences?

Class

Example		
{3}{5}	$\{1\}\{\}\{\}\{\}\}$	4 } { 2 } { } }
4 8 1 7 3		

a string with no duplicate letters

Construction

$$B_{M} = SEQ_{M}(E + Z)$$
EGF equation

$$B_{M}(z) = (1 + z)^{M}$$
Counting sequence

$$N![z^{N}]B_{M}(z) = N!\binom{M}{N} = \frac{M!}{(M - N)!}$$

$$= M(M - 1) \dots (M - N + 1)$$

Coupon collector sequences (M-words with no empty sets)

Def. A *coupon collector sequence* is an *M*-word with no empty set.

Q. How many coupon collector sequences?

a string that uses all the letters in the alphabet

Class R_M , the class of coupon collector sequences

EGF
$$R_M(z) = \sum_{w \in R_M} \frac{z^{|w|}}{|w|!} = \sum_{N \ge 0} R_{MN} \frac{z^N}{N!}$$

Example (M = 26) the quick brown fox jumps over the lazy dog

Example
$$(M = 5)$$

2 4 2 4 5 5 1 5 3
 $\{7\}\{13\}\{9\}\{24\}\{568\}$

Construction

 $R_{M} = SEQ_{M}(SET_{>0}(Z))$

EGF equation

 $R_M(z) = (e^z - 1)^M$

Surjections

Def. An <i>M-surjection</i> is an <i>M</i> -word wi	th no er	mpty set.	'coupon col	lector sequence"
Def. A <i>surjection</i> is a word that is an	<i>M</i> -surje	ction for some <i>M</i> .		$\begin{array}{c}1&1&1\\1&1&2\end{array}$
Q. How many surjections of length A	1?		$1 R_1 =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Class R_M , the class of M -surjections	Class	<i>R</i> , the class of surjections	1 1	$ \begin{array}{c} 1 3 2 \\ 2 1 1 \\ 2 1 2 \end{array} $
Construction $R_M = SEQ_M(SET_{>0}(Z))$	Const	ruction $R = SEQ(SET_{>0}(Z))$	1 2 2 1 <i>R</i> ₂ =	2 1 2 2 1 3 2 2 1 3 2 3 1
EGF equation $R_M(z) = (e^z - 1)^M$	EGF eo	quation $z) = \frac{1}{1 - (zz - 1)} = \frac{1}{2 - zz}$		$ \begin{array}{r} 3 & 1 & 2 \\ 3 & 2 & 1 \\ R_3 = 1 & 3 \end{array} $
Coefficients $R_{MN} \sim M^N$	Coeffi	$(e^{z} - 1) = 2 - e^{z}$ cients $N![z^{N}]R(z) \sim \frac{N!}{2(\ln 2)^{N+1}} \leftarrow$	Best comple (st	handled with ex asymptotics tay tuned)

Some variations on words

M-SURJECTIONS (M-word, all letters used)

 $R_M = SEQ_M(SET_{>0}(Z))$

 $R_M(z) = (e^z - 1)^M$

M-WORD $W_M = SEQ_M (SET(Z))$ $W_M(z) = (e^z)^M = e^{Mz}$

SURJECTIONS (*M*-word for some *M*, all letters used)

 $R = SEQ(SET_{>0} (Z))$ $R(z) = \frac{1}{2 - e^{z}}$

Generalized Coupon Collector

MIN occupancy *M*-WORDS (all letter counts > *b*)

$$W_{M}^{>b} = SEQ_{M}(SET_{>b}(Z))$$
$$W_{M}^{>b}(Z) = \left(\sum_{k>b} z^{k}/k!\right)^{M}$$

Generalized Birthday MAX occupancy *M*-WORDS (all letter counts $\leq b$)

 $W_{M}^{\leq b} = SEQ_{M}(SET_{\leq b}(Z))$ $W_{M}^{\leq b}(z) = \left(\sum_{k \leq b} z^{k}/k!\right)^{M}$

OCCUPANCY CONSTRAINED *M*-WORDS (arbitrary letter count constraints)

 $W_{M\Omega} = SEQ_M(SET_{\Omega}(Z))$

$$W_{M\Omega}(z) = \left(\sum_{k \in \Omega} z^k / k!\right)^M$$

Labelled trees

Def. A *labelled tree* with *N* nodes is a tree whose nodes are labelled with the integers 1 to *N*.

Counting labelled trees

class	same	trees	reason	differer	nt trees	reason
rooted ordered				$ \begin{array}{c} 3\\ 1\\ 4\\ 2 \end{array} $	(3) (4) (1) (2)	order of subtrees is significant
rooted unordered (Cayley)	3 (1) (4) (2)	3 (4) (1) (2)	order of subtrees is <i>not</i> significant	3 1 2	2	root label
unrooted unordered	(3) (1) (2)		same labels on middle node	3 2 1		different labels on middle node
increasing Cayley	1 (2) (4) (3)	(1) (4) (2) (3)		1 (2) (4) (3)	1 3 2 4	different labels on paths
increasing binary						order of subtrees is significant

Labelled trees

A. N! G_N. Proof. Label any canonical walk of every unlabelled tree N! different ways

Labeled rooted ordered trees

Q. How many different labelled rooted ordered trees of size N?

Cayley trees

Q. How many different labelled rooted *unordered* trees of size N?

A. N^{N-1}. Proof. Stay tuned: Cayley trees are special cases of *mappings* (next section)

Increasing Cayley trees

Q. How many different Cayley trees of size *N* with increasing labels on every path?

Increasing binary trees

Q. How many different *binary* trees of size *N* with increasing labels on every path ?

Boxed product construction for labelled classes

Transfer theorem for the boxed product

construction	notation	semantics	EGF
boxed product	$A = B^{\Box} \star C$	subset of $B \star C$ where <i>smallest</i> labelled element is from <i>B</i>	A'(z) = B'(z)C(z)

1.

Proof.

$$A_{N} = \sum_{1 \le k \le N} {\binom{N-1}{k-1}} B_{k} C_{N-k}$$

$$\frac{A_{N}}{(N-1)!} = \sum_{1 \le k \le N} \frac{B_{k}}{(k-1)!} \frac{C_{N-k}}{(N-k)!}$$

$$A'(z) = \sum_{N \ge 1} \frac{A_{N}}{(N-1)!} z^{N-1} = \sum_{N \ge 1} \sum_{1 \le k \le N} \frac{B_{k}}{(k-1)!} \frac{C_{N-k}}{(N-k)!} z^{N-1} = \sum_{k \ge 1} \sum_{N \ge k} \frac{B_{k}}{(k-1)!} \frac{C_{N-k}}{(N-k)!} z^{N-1}$$

$$= \sum_{k \ge 1} \sum_{N \ge 0} \frac{B_{k}}{(k-1)!} \frac{C_{N}}{N!} z^{N+k-1} = \sum_{k \ge 1} \frac{B_{k}}{(k-1)!} z^{k-1} \sum_{N \ge 0} \frac{C_{N}}{N!} z^{N}$$

$$= B'(z)C(z)$$

In-class exercise

Check the boxed-product transfer theorem for a small example.

Increasing trees

[&]quot;binary" = "ordered, each node with 0 or 2 children"

A permutation is an increasing binary tree

Some variations on labelled trees

Q. How many *N*-words of length *N*?

1 $M_1 = 1$

11	111	211	311
12	112	212	312
2 1	113	213	313
22	121	221	321
	122	222	322
$M_2 = 4$	123	223	3 2 3
	131	231	3 3 1
	132	232	3 3 2
	133	2 3 3	3 3 3

 $M_3 = 27$

1111	2111	3111	4 1 1 1
1112	2112	3112	4 1 1 2
1 1 1 3	2113	3 1 1 3	4 1 1 3
1114	2114	3114	4 1 1 4
1 1 2 1	2121	3121	4 1 2 1
1 1 2 2	2122	3 1 2 2	4 1 2 2
1 1 2 3	2123	3 1 2 3	4 1 2 3
1 1 2 4	2124	3 1 2 4	4 1 2 4
1 1 3 1	2131	3131	4 1 3 1
1 1 3 2	2 1 3 2	3 1 3 2	4 1 3 2
1 1 3 3	2 1 3 3	3 1 3 3	4 1 3 3
1 1 3 4	2 1 3 4	3 1 3 4	4 1 3 4
1 1 4 1	2141	3141	4 1 4 1
1 1 4 2	2142	3 1 4 2	4 1 4 2
1 1 4 3	2143	3 1 4 3	4 1 4 3
1 1 4 4	2144	3144	4 1 4 4
1211	2211	3211	4211

 $M_4 = 64$

58

A. *N*^{*N*}

Def. A *mapping* is a function from the set of integers from 1 to N onto itself.

6

Example

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

 9
 12
 29
 33
 5
 20
 13
 8
 2
 33
 29
 2
 35
 37
 33
 9
 35
 21
 18
 2
 25
 1
 20
 33
 23
 18
 29
 5
 5
 9
 11
 5
 11

Every mapping corresponds to a digraph

- N vertices, N edges
- Outdegrees: all 1
- Indegrees: between 0 and N

Natural questions about random mappings

- Probability that the digraph is connected ?
- How many connected components ?
- How many nodes are on cycles ?

Q. How many *mappings* of length *N*?

A. N^N, by correspondence with N-words, but internal structure is of interest.

Lagrange inversion

is a classic method for computing a *functional inverse*.

Def. The *inverse* of a function f(u) = z is the function u = g(z).

Ex.
$$f(u) = \frac{u}{1-u}$$
 $g(z) = \frac{z}{1+z}$

Lagrange Inversion Theorem.

If a GF
$$g(z) = \sum_{n \ge 1} g_n z^n$$
 satisfies the equation $z = f(g(z))$
with $f(0) = 0$ and $f'(0) \neq 0$ then $g_n = \frac{1}{n} [u^{n-1}] \left(\frac{u}{f(u)}\right)^n$.

Proof. Omitted (best understood via complex analysis).

Ex.
$$f(u) = \frac{u}{1-u}$$
 $g_n = \frac{1}{n} [u^{n-1}](1-u)^n = (-1)^{n-1}$ $\sum_{n \ge 1} (-1)^n z^n = \frac{z}{1+z}$

Analytic combinatorics context: A widely applicable analytic transfer theorem

A more general (and more useful) formuation:

Lagrange Inversion Theorem (Bürmann form).

If a GF
$$g(z) = \sum_{n \ge 1} g_n z^n$$
 satisfies the equation $z = f(g(z))$
with $f(0) = 0$ and $f'(0) \neq 0$ then, for any function $H(u)$, \longleftarrow $H(u) = u$ gives the basic theorem
 $[z^n]H(g(z)) = \frac{1}{n}[u^{n-1}]H'(u)\left(\frac{u}{f(u)}\right)^n$

One important application: enumerating mappings

Lagrange inversion: classic application

How many binary trees with N external nodes?

Class	<i>T</i> , the	class	of all	binary	trees
-------	----------------	-------	--------	--------	-------

Size The number of external nodes

Construction	$T = Z + T \times T$	
OGF equation	$T(z) = z + T(z)^2$	
	$z = T(z) - T(z)^2$	
Extract coefficients by Lagrange inversion with $f(u) = u - u^2$	$[z^{N}]T(z) = \frac{1}{N}[u^{N-1}]\left(\frac{1}{1-u}\right)^{N}$	Lagrange Inversion Theorem. If a GF $g(z) = \sum_{n \ge 1} g_n z^n$ satisfies the equation $z = f(g(z))$ with $f(0) = 0$ and $f'(0) \neq 0$ then $g_n = \frac{1}{n} [u^{n-1}] \left(\frac{u}{f(u)}\right)^n$.
	$=\frac{1}{N}\binom{2N-2}{N-1} \checkmark$	Take $M = N$ and $k = N - 1$ in $\frac{1}{(1 - z)^M} = \sum_{k \ge 0} \binom{k + M - 1}{M - 1} z^k$

Cayley trees

Connected components in mappings

Q. How many different cycles of Cayley trees of size *N*?

Connected components in mappings

The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction	notation	semantics	EGF
disjoint union	A + B	disjoint copies of objects from A and B	A(z) + B(z)
labelled product	A ★ B	ordered pairs of copies of objects, one from A and one from B	A(z)B(z)
	$SEQ_k(A)$ or A^k	k- sequences of objects from A	$A(z)^k$
sequence	SEQ(A)	sequences of objects from A	$\frac{1}{1 - A(z)}$
	$SET_k(A)$	k-sets of objects from A	$A(z)^k/k!$
set	SET(A)	sets of objects from A	$e^{A(z)}$
	$CYC_k(A)$	<i>k</i> -cycles of objects from <i>A</i>	$A(z)^k/k$
cycle	CYC(A)	cycles of objects from A	$\ln \frac{1}{1 - A(z)}$
boxed product	$A = B^{\Box} \star C$	subset of $B \star C$ where <i>smallest</i> labelled element is from <i>B</i>	A'(z) = B'(z)C(z)

Constructions for labelled objects (summary)

class	construction	EGF
urns	U = SET(Z)	$U(z) = e^{z}$
cycles	Y = CYC(Z)	$Y(z) = \ln \frac{1}{1-z}$
permutations	P = SEQ(Z)	$P(z) = \frac{1}{1-z}$
derangements	$D = SET(CYC_{>1}(Z))$	$D(z) = \frac{e^{-z}}{1-z}$
involutions	$I = SET(CYC_{1,2}(Z))$	$I(z) = e^{z + z^2/2}$
words	$W_M = SEQ_M(SET(Z))$	$W_M(z) = e^{Mz}$
surjections	$R = SEQ (SET_{>0}(Z))$	$R(z) = \frac{1}{2 - e^z}$
trees	$L = Z \star SEQ(L)$	$L(z) = \ln \frac{1}{1-z}$
Cayley trees	$C = Z \star SET(C)$	$C(z) = z e^{C(z)}$
increasing Cayley trees	$Q = Z^{\Box} \star SET(Q)$	$Q'(z) = e^{Q(z)}$
mappings	M = SET(CYC(C))	$M(z) = \frac{1}{1 - C(z)}$

Analytic combinatorics overview

To analyze properties of a large combinatorial structure:

- 1. Use the symbolic method
 - Define a *class* of combinatorial objects.
 - Define a notion of *size* (and associated generating function)
- Use standard operations to develop a *specification* of the structure. Result: A direct derivation of a GF equation (implicit or explicit).

$$\begin{array}{ll} \text{Important note: GF equations vary widely in nature} \\ U(z) = e^{z} & Q'(z) = e^{Q(z)} \\ Y(z) = \ln \frac{1}{1-z} & R(z) = \frac{1}{2-e^{z}} & I(z) = e^{z+z^{2}/2} \\ P(z) = \frac{1}{1-z} & W_{M}^{\leq b}(z) = (1+z+z^{2}/2!+\ldots+z^{b}/b!)^{M} \\ P(z) = \frac{1}{1-z} & M(z) = \frac{1}{1-C(z)} & W_{M}(z) = e^{Mz} & D_{>r}(z) = \frac{e^{-z-z^{2}/2-\ldots-z^{r}/r}}{1-z} & C(z) = ze^{C(z)} \end{array}$$

2. Use complex asymptotics to estimate growth of coefficients (stay tuned).

Direct advantages of the symbolic method

We can *automate* the transfer from specifications to GFs.

Ref: Automatic average-case analysis of algorithms. by Philippe Flajolet, Bruno Salvy, and Paul Zimmerman (*TCS 1991*).

We can use specifications to generate random structures.

Approach 1: Use a recursive program based on the specification. Drawback: Requires quadratic time (not useful for large structures).

Approach 2: Use a probabilistic recursive program based on the specification. Need to settle for *approximate* size *N*. Can generate large structures in linear time.

Ref: *Boltzmann samplers for random generation of combinatorial structures.* by Philippe Duchon, Philippe Flajolet, Guy Louchard and Gilles Schaefer (*CPC 2004*).

French mathematicians on the utility of GFs (continued)

"This approach eliminates virtually all calculations."

— Dominique Foata & Marco Schützenberger, 1970

Note II.11

Ehrenfest model

▷ **II.11.** Balls switching chambers: the Ehrenfest model. Consider a system of two chambers A and B (also classically called "urns"). There are N distinguishable balls, and, initially, chamber A contains them all. At any instant $\frac{1}{2}, \frac{3}{2}, \ldots$, one ball is allowed to change from one chamber to the other. Let $E_n^{[\ell]}$ be the number of possible evolutions that lead to chamber A containing ℓ balls at instant n and $E^{[\ell]}(z)$ the corresponding EGF. Then

$$E^{[\ell]}(z) = \binom{N}{\ell} (\cosh z)^{\ell} (\sinh z)^{N-\ell}, \qquad E^{[N]}(z) = (\cosh z)^{N} \equiv 2^{-N} (e^{z} + e^{-z})^{N}.$$

[Hint: the EGF $E^{[N]}$ enumerates mappings where each preimage has an even cardinality.] In particular the probability that urn A is again full at time 2n is

$$\frac{1}{2^N N^{2n}} \sum_{k=0}^N \binom{N}{k} (N-2k)^{2n}.$$

Note II.31

Combinatorics of trigonometrics

▷ II.31. Combinatorics of trigonometrics.	Interpret $\tan \frac{z}{1-z}$,	$\tan \tan z$,	$\tan(e^z - 1)$ as EGFs of
combinatorial classes.	- ~		\triangleleft

•

Assignments

1. Read pages 95-149 (Labelled Structures and EGFs) in text.

- 2. Write up solutions to Notes **II**.11 and **II**.31.
- 3. Programming exercise (Extra Credit).

Program II.1. Write a program to simulate the Ehrenfest mode (see Note II.11) and use it to plot the distribution of the number of balls in urn A after 10³, 10⁴ and 10⁵ steps when starting with 10³ balls in urn A and none in urn B.

ANALYTIC COMBINATORICS

PART TWO

http://ac.cs.princeton.edu