Finding the K Shortest (Hyper-)Paths in a Hypergraph
 (aka Synthesis Planning)

DM840-2022 - Week 45
Department of Mathematics and Computer Science
University of Southern Denmark

November 08, 2022

Synthesis Planning

Retrosynthetic method ${ }^{1}$:

- Bondset
- Stage 1: Choose bondset
- Stage 2: Choose plan for fixing bonds in bondset
- Types of reactions:
- Construction: affixations \& cyclizations
- Functionalizations

Decaline

Plan $=$ sequencing of bond fixations $=$ unary-binary tree

- Cost measure for plans
- External Path Length (EPL)
- Total Weight of Starting Materials (W)

[^0]
Synthesis Planning

Stage 2: Choose plan for bondset

One bondset represents many plans.
Questions:

- How do we choose the best? Known ${ }^{2}$.
- Is one answer enough?

Here: How to compute the K best plans

[^1]
Synthesis Plans as Hypergraphs

Hypergraph
(Actually, the hypergraph above is a hyperpath)

Hyperpath in Hypergraph ${ }^{3}$

Definition

A hyperpath $\pi_{s t}=\left(V_{\pi}, E_{\pi}\right)$ from a source vertex s to a target vertex t is a subhypergraph of H with the following properties: E_{π} can be ordered in a sequence $\left\langle e_{1}, e_{2}, \ldots, e_{q}\right\rangle$ such that

1. $T\left(e_{i}\right) \subseteq\{s\} \cup\left\{H\left(e_{1}\right), H\left(e_{2}\right), \ldots, H\left(e_{i-1}\right)\right\}$ for all i
2. $t=H\left(e_{q}\right)$
3. Every $v \in V_{\pi} \backslash\{t\}$ has at least one outgoing hyperarc in E_{π}
4. Every $v \in V_{\pi} \backslash\{s\}$ has exactly one ingoing hyperarc in E_{π}

Hyperpath

Not hyperpath

Not hyperpath
${ }^{3}$ variation of Ausiello, G., Franciosa, P., Frigioni, D., TCS (2001)

Hyperpath in Hypergraph ${ }^{3}$

Definition

A hyperpath $\pi_{s t}=\left(V_{\pi}, E_{\pi}\right)$ from a source vertex s to a target vertex t is a subhypergraph of H with the following properties: E_{π} can be ordered in a sequence $\left\langle e_{1}, e_{2}, \ldots, e_{q}\right\rangle$ such that

1. $T\left(e_{i}\right) \subseteq\{s\} \cup\left\{H\left(e_{1}\right), H\left(e_{2}\right), \ldots, H\left(e_{i-1}\right)\right\}$ for all i
2. $t=H\left(e_{q}\right)$
3. Every $v \in V_{\pi} \backslash\{t\}$ has at least one outgoing hyperarc in E_{π}
4. Every $v \in V_{\pi} \backslash\{s\}$ has exactly one ingoing hyperarc in E_{π}

Hyperpath

Not hyperpath

Not hyperpath
${ }^{3}$ variation of Ausiello, G., Franciosa, P., Frigioni, D., TCS (2001)

Hyperpath in Hypergraph ${ }^{3}$

Definition

A hyperpath $\pi_{s t}=\left(V_{\pi}, E_{\pi}\right)$ from a source vertex s to a target vertex t is a subhypergraph of H with the following properties: E_{π} can be ordered in a sequence $\left\langle e_{1}, e_{2}, \ldots, e_{q}\right\rangle$ such that

1. $T\left(e_{i}\right) \subseteq\{s\} \cup\left\{H\left(e_{1}\right), H\left(e_{2}\right), \ldots, H\left(e_{i-1}\right)\right\}$ for all i
2. $t=H\left(e_{q}\right)$
3. Every $v \in V_{\pi} \backslash\{t\}$ has at least one outgoing hyperarc in E_{π}
4. Every $v \in V_{\pi} \backslash\{s\}$ has exactly one ingoing hyperarc in E_{π}

Hyperpath

Not hyperpath

Not hyperpath
${ }^{3}$ variation of Ausiello, G., Franciosa, P., Frigioni, D., TCS (2001)

Hyperpaths in Hypergraph, Example

H

π_{1}

π_{2}

π_{3}

π_{4}

Hypergraph of Synthesis Plans (HoSP)

Definition

R : Finite set of reactions
S : Set of starting materials
Let E_{R} be the representation of R as a set of hyperarcs. Let V_{R} be the set of vertices appearing in the heads and tails of the hyperarcs in E_{R}. The hypergraph of synthesis plans (HoSP) is the hypergraph

$$
H=\left(V_{R} \cup\{s\}, E_{R} \cup E_{s}\right)
$$

Properties of the HoSP

Lemma

Let H be a HoSP. Then any hyperpath $\pi_{s v}$ from s to any other vertex v corresponds to a synthesis plan for v.

HoSP is acyclic \Rightarrow topological sorting of vertices exist.

"Cost Functions" - External Path Length

$$
\begin{array}{cl}
\pi & \begin{array}{l}
\text { st-hyperpath. } \\
\mathcal{S} \\
\text { set potential starting materials. } \\
i \in \mathcal{S} \cap \pi \\
\text { starting material of } \pi
\end{array} \\
P_{i t}=\left(i, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{\left|P_{i t}\right|}, t\right) & \begin{array}{l}
\text { simple it-path th in } \pi \\
\mathrm{EPL}_{\pi}=\sum_{i}
\end{array} \sum_{P_{i t} \in \pi}\left|P_{i t}\right|
\end{array}
$$

Cost Functions - Total Weight of Starting Materials

$$
\begin{array}{cl}
\pi & \text { st-hyperpath. } \\
\mathcal{S} & \text { set potential starting materials. } \\
P_{i t}=\left(i, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{\left|P_{i t}\right|}, t\right) & \begin{array}{l}
\text { starting material of } \pi . \\
r_{v, e} \\
\text { simple it-path in } \pi . \\
\text { retro yield }
\end{array} \\
\mathrm{W}_{\pi}=\sum_{i} \sum_{P_{i t} \in \pi} \prod_{j=0}^{\left|P_{i t}\right|} r_{v_{j}, e_{j+1}}
\end{array}
$$

Cost Functions - Total Weight of Starting Materials

$$
\begin{gather*}
\begin{array}{ll}
\pi & \begin{array}{l}
\text { st-hyperpath. } \\
\mathcal{S} \\
\text { set potential starting materials. } \\
i \in \mathcal{S} \cap \pi
\end{array} \\
P_{i t}=\left(i, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{\left|P_{i t}\right|}, t\right) & \begin{array}{l}
\text { simple it-path in } \pi \\
r_{v, e}
\end{array} \\
\text { retro yield }
\end{array} \\
\mathrm{W}_{\pi}=\sum_{i} \sum_{P_{i t} \in \pi} \prod_{j=0}^{\left|P_{i t}\right|} r_{v_{j}, e_{j+1}} \\
\mathrm{~W}(u)= \begin{cases}0 & \text { if } u=s \\
1 \sum_{v \in T(p(u))} r_{v, p(u)} \mathrm{W}(v) & \text { if } u \in \mathcal{S} \\
\text { otherwise }\end{cases}
\end{gather*}
$$

Cost Functions : Example

The Problem with EPL

t :

$E P L=96$

The Problem with EPL

EPL=97

$E P L=96$

EPL=98

EPL is not additive

The Problem with EPL

Yens Algorithm ${ }^{4}$

K shortest simple paths from s to t in a (standard) directed graph

[^2]
Yens Algorithm ${ }^{4}$

K shortest simple paths from s to t in a (standard) directed graph
$\mathcal{P}=\{P \mid P$ is a path from s to $t\}$
$P^{\prime} \in \mathcal{P}$ is the best.
Partition $\mathcal{P} \backslash P^{\prime}$ into $\left|P^{\prime}\right|$ disjoint sets, creating $\left|P^{\prime}\right|$ shortest path problems.

Yens Algorithm

YenKSP(C, H, 3)

Yens Algorithm

Dijkstra: C

Yens Algorithm

Dijkstra: C,E

Yens Algorithm

Dijkstra: C, E,F

Yens Algorithm

Dijkstra: C, E,F,H

Yens Algorithm

Yens Algorithm

Yens Algorithm

Yens Algorithm

Root Path: C

Yens Algorithm

Root Path: C

Yens Algorithm

Removing links.

Yens Algorithm

Spur Path $=C$

Yens Algorithm

Yens Algorithm

Spur Path $=C, D, F$

Yens Algorithm

Spur Path $=C, D, F, H$

Yens Algorithm

$$
B+=C, D, F, H(8)
$$

Yens Algorithm

$$
B+=C, D, F, H(8)
$$

Yens Algorithm

Yens Algorithm

Root Path: C,E

Yens Algorithm

Root Path: C,E

Yens Algorithm

Removing links.

Yens Algorithm

Spur Path $=\mathrm{E}$

Yens Algorithm

Spur Path $=$ E,G

Yens Algorithm

Spur Path $=\mathrm{E}, \mathrm{G}, \mathrm{H}$

Yens Algorithm

Yens Algorithm

Yens Algorithm

Yens Algorithm

Root Path: C,E,F

Yens Algorithm

Root Path: C,E,F

Yens Algorithm

Removing links.

Yens Algorithm

Yens Algorithm

$$
A[2]=C, E, G, H(7)
$$

Yens Algorithm

$$
A[2]=C, E, G, H(7)
$$

Yens Algorithm

Yens Algorithm

Yens Algorithm

Root Path: C,E

Yens Algorithm

Root Path: C,E

Yens Algorithm

Removing links.

Yens Algorithm

Spur Path $=\mathrm{E}$

Yens Algorithm

$$
\text { Spur Path }=E, D
$$

Yens Algorithm

Spur Path $=\mathrm{E}, \mathrm{D}, \mathrm{F}$

Yens Algorithm

Spur Path $=E, D, F, H$

Yens Algorithm

Yens Algorithm

Yens Algorithm

No unique Spur Path

Yens Algorithm

Yens Algorithm

Yens Algorithm

Yens Algorithm

Finished:

Yens Algorithm

Finished:

Yens Algorithm

Finished:

Yens Algorithm

- Implementation details omitted
- Runtime : dominated by $K \cdot|V|$ Dijkstra calls (i.e., in any of the K iterations/partitionings max "length of current path" many Dijkstras (i.e., max. $|V|$ many Dijkstras))

K Shortest Hyperpaths Algorithm ${ }^{5}$

Setup: $\quad H=(V, E)$ directed hypergraph

$$
\begin{array}{rl}
s, t \in V & s \text { is hyperconnected to } t . \\
\mathcal{P}=\{\pi \mid \pi \text { is a hyperpath from } s \text { to } t\} \\
\pi_{s t} \in \mathcal{P} & \text { is the shortest. }
\end{array}
$$

$\pi_{s t}:$
Topological ordering
$\left(s, u_{1}, \ldots, u_{q-2}, u_{q-1}, u_{t}\right)$
Predecessor function $p: V_{\pi} \rightarrow E_{\pi}$

$$
\} \Rightarrow\left(p\left(u_{1}\right), p\left(u_{2}\right), \ldots, p\left(u_{q-1}\right), p(t)\right)
$$

[^3]
K Shortest Hyperpaths

Setup: $\quad \mathcal{P}=\{\pi \mid \pi$ is a hyperpath from s to $t\}$

$$
\begin{aligned}
& \pi_{s t} \in \mathcal{P} \quad \text { is the shortest. } \\
& E_{\pi_{s t}}=\left(p\left(u_{1}\right), p\left(u_{2}\right), \ldots, p\left(u_{q-1}\right), p(t)\right)
\end{aligned}
$$

Partition $\mathcal{P} \backslash\left\{\pi_{s t}\right\}$ to $\mathcal{P}^{i}, 1 \leq i \leq q$ s.t.:

$$
\pi \underset{\hat{\mathbb{L}}}{ }
$$

$$
\begin{gathered}
E_{\pi}=\left(e_{1}, e_{2}, \ldots, e_{m-1}, e_{m}, p\left(u_{i+1}\right), \ldots, p\left(u_{q-2}\right), p\left(u_{q-1}\right), p(t)\right), \\
e_{m} \neq p\left(u_{i}\right)
\end{gathered}
$$

K Shortest Hyperpaths

 1st iteration$$
L=\left\{\left(H, \pi_{1}\right)\right\}
$$

$H:\left\{\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right\}$
π_{1} is red

$H^{5}:\left\{\pi_{2}, \pi_{4}\right\}$
$H^{2}: \emptyset$

$H^{4}: \varnothing$

$H^{1}: \emptyset$

$H^{3}:\left\{\pi_{3}\right\}$

K Shortest Hyperpaths

2nd iteration

$$
L=\left\{\left(H^{5}, \pi_{2}\right),\left(H^{3}, \pi_{3}\right)\right\}
$$

$H^{54}:\{\pi 4\}$

$H^{52}: \emptyset$

$H^{51}: \emptyset$

Backwards Branching

```
Back- \(\operatorname{Branch}(\widetilde{H}, \widetilde{\pi})\)
    \(1 \quad \mathcal{B}=\emptyset\)
    2 for \(i=1\) to \(q\)
    3 Let \(\widetilde{H}^{i}\) be a new hypergraph
    \(4 \quad \tilde{H}^{i} . V=\widetilde{H} . V\)
    5 // Remove hyperarc from of \(\widetilde{H}\)
    \(6 \quad \widetilde{H}^{i} . E=\widetilde{H} \cdot E \backslash\left\{\widetilde{\pi} \cdot p\left(u_{i}\right)\right\}\)
    7 // Fix back tree
    \(8 \quad\) for \(j=i+1\) to \(q\)
    \(9 \quad \widetilde{H}^{i} \cdot \mathrm{BS}\left(u_{j}\right)=\left\{\widetilde{\pi} \cdot p\left(u_{j}\right)\right\}\)
\(10 \quad \mathcal{B}=\mathcal{B} \cup\left\{\widetilde{H}^{i}\right\}\)
11 return \(\mathcal{B}\)
```

Running time: $O(|V|(|V|+|E|))$

K Shortest Hyperpaths

K-synthesis (H, s, t, K)
1 Let L be a new priority queue
$2 \pi=\operatorname{ShortestPath}(H, s, t)$
$3 \operatorname{Insert}(L,(H, \pi))$
4 for $k=1$ to K
5 if $L=\emptyset$
6
break
$7 \quad\left(H^{\prime}, \pi^{\prime}\right)=$ Extract- $\operatorname{Min}(L)$
8 output π^{\prime}
9 if $k==K$
10
11
12
13
14
break
for each H^{i} in Back- $\operatorname{Branch}\left(H^{\prime}, \pi^{\prime}\right)$
$\pi^{i}=\operatorname{ShortestPath}\left(H^{i}, s, t\right)$
if $W\left(\pi^{i}\right)<\infty$
$\operatorname{Insert}\left(L,\left(H^{i}, \pi^{i}\right)\right)$
Running time: $O(K|V|(|V|+|E|)+K \lg K)$

[^0]: ${ }^{1}$ Systematic Synthesis Design. 6. Yield Analysis and Convergency, Hendrickson, James B., 1977

[^1]: ${ }^{2}$ Computational complexity of synthetic chemistry - Basic facts, Smith, Warren D, 1997

[^2]: ${ }^{4}$ Finding the k Shortest Loopless Paths in a Network, Yen, Jin Y, 1971

[^3]: ${ }^{5}$ Finding the K shortest hyperpaths, Nielsen et. al., 2005

