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Synthesis Planning

Retrosynthetic method1:

I Bondset
I Stage 1: Choose bondset
I Stage 2: Choose plan for fixing

bonds in bondset

I Types of reactions:
I Construction:

affixations & cyclizations
I Functionalizations

Plan = sequencing of bond fixations =
unary-binary tree

I Cost measure for plans
I External Path Length (EPL)
I Total Weight of Starting Materials (W)

Decaline

1
Systematic Synthesis Design. 6. Yield Analysis and Convergency, Hendrickson, James B., 1977
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Synthesis Planning
Stage 2: Choose plan for bondset
One bondset represents many plans.

Questions:

I How do we choose the best? Known2.

I Is one answer enough?

Here: How to compute the K best plans

Decaline

2
Computational complexity of synthetic chemistry – Basic facts, Smith, Warren D, 1997
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Synthesis Plans as Hypergraphs
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(Actually, the hypergraph above is a hyperpath)
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Hyperpath in Hypergraph3

Definition
A hyperpath πst = (Vπ,Eπ) from a source vertex s to a target vertex t is
a subhypergraph of H with the following properties: Eπ can be ordered in
a sequence 〈e1, e2, ..., eq〉 such that

1. T (ei ) ⊆ {s} ∪ {H(e1),H(e2), ...,H(ei−1)} for all i

2. t = H(eq)

3. Every v ∈ Vπ \ {t} has at least one outgoing hyperarc in Eπ

4. Every v ∈ Vπ \ {s} has exactly one ingoing hyperarc in Eπ
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3variation of Ausiello, G., Franciosa, P., Frigioni, D., TCS (2001)

5/76



Hyperpath in Hypergraph3

Definition
A hyperpath πst = (Vπ,Eπ) from a source vertex s to a target vertex t is
a subhypergraph of H with the following properties: Eπ can be ordered in
a sequence 〈e1, e2, ..., eq〉 such that

1. T (ei ) ⊆ {s} ∪ {H(e1),H(e2), ...,H(ei−1)} for all i

2. t = H(eq)

3. Every v ∈ Vπ \ {t} has at least one outgoing hyperarc in Eπ

4. Every v ∈ Vπ \ {s} has exactly one ingoing hyperarc in Eπ

A

B
C

D E

F
s

Hyperpath

A

B
C

D E

F
s

Not hyperpath

A

B
C

D E

F
s

Not hyperpath
3variation of Ausiello, G., Franciosa, P., Frigioni, D., TCS (2001)

5/76



Hyperpath in Hypergraph3

Definition
A hyperpath πst = (Vπ,Eπ) from a source vertex s to a target vertex t is
a subhypergraph of H with the following properties: Eπ can be ordered in
a sequence 〈e1, e2, ..., eq〉 such that

1. T (ei ) ⊆ {s} ∪ {H(e1),H(e2), ...,H(ei−1)} for all i

2. t = H(eq)

3. Every v ∈ Vπ \ {t} has at least one outgoing hyperarc in Eπ

4. Every v ∈ Vπ \ {s} has exactly one ingoing hyperarc in Eπ

A

B
C

D E

F
s

Hyperpath

A

B
C

D E

F
s

Not hyperpath

A

B
C

D E

F
s

Not hyperpath
3variation of Ausiello, G., Franciosa, P., Frigioni, D., TCS (2001)

5/76



Hyperpaths in Hypergraph, Example
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Hypergraph of Synthesis Plans (HoSP)

Definition
R: Finite set of reactions
S : Set of starting materials

Let ER be the representation of R as a set of
hyperarcs. Let VR be the set of vertices
appearing in the heads and tails of the
hyperarcs in ER . The hypergraph of
synthesis plans (HoSP) is the hypergraph

H = (VR ∪ {s},ER ∪ Es)

Decaline
s
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Properties of the HoSP

Lemma
Let H be a HoSP. Then any hyperpath πsv
from s to any other vertex v corresponds to a
synthesis plan for v .

HoSP is acyclic ⇒ topological sorting of
vertices exist.

s
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“Cost Functions” – External Path Length

π st-hyperpath.
S set potential starting materials.

i ∈ S ∩ π starting material of π.
Pit = (i , e1, v1, e2, v2, ..., e|Pit |, t) simple it-path th in π.

EPLπ =
∑
i

∑
Pit∈π

|Pit |, (1)
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Cost Functions - Total Weight of Starting Materials

π st-hyperpath.
S set potential starting materials.

i ∈ S ∩ π starting material of π.
Pit = (i , e1, v1, e2, v2, ..., e|Pit |, t) simple it-path in π.

rv ,e retro yield

Wπ =
∑
i

∑
Pit∈π

|Pit |∏
j=0

rvj ,ej+1 (2)

W(u) =


0 if u = s
1 if u ∈ S∑
v∈T (p(u))

rv ,p(u) W(v) otherwise
(3)

10/76



Cost Functions - Total Weight of Starting Materials

π st-hyperpath.
S set potential starting materials.

i ∈ S ∩ π starting material of π.
Pit = (i , e1, v1, e2, v2, ..., e|Pit |, t) simple it-path in π.

rv ,e retro yield

Wπ =
∑
i

∑
Pit∈π

|Pit |∏
j=0

rvj ,ej+1 (2)

W(u) =


0 if u = s
1 if u ∈ S∑
v∈T (p(u))

rv ,p(u) W(v) otherwise
(3)

10/76



Cost Functions : Example
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The Problem with EPL
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The Problem with EPL
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Yens Algorithm 4

K shortest simple paths from s to t in a (standard) directed graph

P = {P|P is a path from s to t}
P ′ ∈ P is the best.
Partition P \ P ′ into |P ′| disjoint sets, creating |P ′| shortest path
problems.

4
Finding the k Shortest Loopless Paths in a Network, Yen, Jin Y, 1971
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Yens Algorithm
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Yens Algorithm

I Implementation details omitted

I Runtime : dominated by K · |V | Dijkstra calls
(i.e., in any of the K iterations/partitionings max “length of
current path” many Dijkstras (i.e., max. |V | many Dijkstras))
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K Shortest Hyperpaths Algorithm5

Setup: H = (V ,E ) directed hypergraph
s, t ∈ V s is hyperconnected to t.
P = {π|π is a hyperpath from s to t}

πst ∈ P is the shortest.

πst :

Topological ordering
(s, u1, ..., uq−2, uq−1, ut)

Predecessor function
p : Vπ → Eπ

⇒ (p(u1), p(u2), ..., p(uq−1), p(t))

5
Finding the K shortest hyperpaths, Nielsen et. al., 2005
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K Shortest Hyperpaths

Setup: P = {π|π is a hyperpath from s to t}
πst ∈ P is the shortest.
Eπst = (p(u1), p(u2), ..., p(uq−1), p(t))

Partition P \ {πst} to P i , 1 ≤ i ≤ q s.t.:

π ∈ P i

m
Eπ =(e1, e2, ..., em−1,em,p(ui+1), ..., p(uq−2), p(uq−1), p(t)),

em 6= p(ui )
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K Shortest Hyperpaths
1st iteration
L = {(H, π1)}
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K Shortest Hyperpaths
2nd iteration
L = {(H5, π2), (H3, π3)}
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Backwards Branching

Back-Branch(H̃, π̃)

1 B = ∅
2 for i = 1 to q

3 Let H̃ i be a new hypergraph

4 H̃ i .V = H̃.V

5 // Remove hyperarc from of H̃

6 H̃ i .E = H̃.E \ {π̃.p(ui )}
7 // Fix back tree
8 for j = i + 1 to q

9 H̃ i .BS(uj) = {π̃.p(uj)}
10 B = B ∪ {H̃ i}
11 return B

Running time: O(|V |(|V |+ |E |))
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K Shortest Hyperpaths

K-synthesis(H, s, t,K )

1 Let L be a new priority queue
2 π = ShortestPath(H, s, t)
3 Insert (L, (H, π))
4 for k = 1 to K
5 if L = ∅
6 break
7 (H ′, π′) = Extract-Min(L)
8 output π′

9 if k == K
10 break
11 for each H i in Back-Branch(H ′, π′)
12 πi = ShortestPath(H i , s, t)
13 if W (πi ) <∞
14 Insert

(
L, (H i , πi )

)
Running time: O(K |V |(|V |+ |E |) + K lgK )
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