Finding the K Shortest (Hyper-)Paths in a Hypergraph (aka Synthesis Planning)

DM840 - 2022 - Week 45

Department of Mathematics and Computer Science University of Southern Denmark

November 08, 2022

Synthesis Planning

Retrosynthetic method¹:

- Bondset
 - Stage 1: Choose bondset
 - Stage 2: Choose plan for fixing bonds in bondset
- Types of reactions:
 - Construction: affixations & cyclizations
 - Functionalizations
 - Plan = sequencing of bond fixations = unary-binary tree
- Cost measure for plans
 - External Path Length (EPL)
 - Total Weight of Starting Materials (W)

Synthesis Planning

Stage 2: Choose plan for bondset One bondset represents many plans.

Questions:

- ▶ How do we choose the best? Known².
- Is one answer enough?

Here: How to compute the K best plans

 2 Computational complexity of synthetic chemistry – Basic facts, Smith, Warren D, 1997

Synthesis Plans as Hypergraphs

(Actually, the hypergraph above is a hyperpath)

Hyperpath in Hypergraph³

Definition

A hyperpath $\pi_{st} = (V_{\pi}, E_{\pi})$ from a source vertex s to a target vertex t is a subhypergraph of H with the following properties: E_{π} can be ordered in a sequence $\langle e_1, e_2, ..., e_q \rangle$ such that

- 1. $T(e_i) \subseteq \{s\} \cup \{H(e_1), H(e_2), ..., H(e_{i-1})\}$ for all *i* 2. $t = H(e_a)$
- 3. Every $v \in V_\pi \setminus \{t\}$ has at least one outgoing hyperarc in E_π
- 4. Every $v \in V_\pi \setminus \{s\}$ has exactly one ingoing hyperarc in E_π

Hyperpath in Hypergraph³

Definition

A hyperpath $\pi_{st} = (V_{\pi}, E_{\pi})$ from a source vertex s to a target vertex t is a subhypergraph of H with the following properties: E_{π} can be ordered in a sequence $\langle e_1, e_2, ..., e_q \rangle$ such that

- 1. $T(e_i) \subseteq \{s\} \cup \{H(e_1), H(e_2), ..., H(e_{i-1})\}$ for all *i* 2. $t = H(e_a)$
- 3. Every $v \in V_\pi \setminus \{t\}$ has at least one outgoing hyperarc in E_π
- 4. Every $v \in V_\pi \setminus \{s\}$ has exactly one ingoing hyperarc in E_π

Hyperpath in Hypergraph³

Definition

A hyperpath $\pi_{st} = (V_{\pi}, E_{\pi})$ from a source vertex s to a target vertex t is a subhypergraph of H with the following properties: E_{π} can be ordered in a sequence $\langle e_1, e_2, ..., e_q \rangle$ such that

- 1. $T(e_i) \subseteq \{s\} \cup \{H(e_1), H(e_2), ..., H(e_{i-1})\}$ for all *i* 2. $t = H(e_a)$
- 3. Every $v \in V_\pi \setminus \{t\}$ has at least one outgoing hyperarc in E_π
- 4. Every $v \in V_\pi \setminus \{s\}$ has exactly one ingoing hyperarc in E_π

Hyperpaths in Hypergraph, Example

Hypergraph of Synthesis Plans (HoSP)

Definition

- R: Finite set of reactions
- S: Set of starting materials

Let E_R be the representation of R as a set of hyperarcs. Let V_R be the set of vertices appearing in the heads and tails of the hyperarcs in E_R . The hypergraph of synthesis plans (HoSP) is the hypergraph

$$H = (V_R \cup \{s\}, E_R \cup E_s)$$

S

Properties of the HoSP

Lemma

Let H be a HoSP. Then any hyperpath π_{sv} from s to any other vertex v corresponds to a synthesis plan for v.

HoSP is acyclic \Rightarrow topological sorting of vertices exist.

"Cost Functions" – External Path Length

$$\pi \quad \text{st-nyperpath.}$$

$$S \quad \text{set potential starting materials.}$$

$$i \in S \cap \pi \quad \text{starting material of } \pi.$$

$$P_{it} = (i, e_1, v_1, e_2, v_2, ..., e_{|P_{it}|}, t) \quad \text{simple } it\text{-path th in } \pi.$$

$$\text{EPL}_{\pi} = \sum_i \sum_{P_{it} \in \pi} |P_{it}|, \qquad (1)$$

Cost Functions - Total Weight of Starting Materials

$$\begin{array}{ll} \pi & \textit{st-hyperpath.} \\ \mathcal{S} & \textit{set potential starting materials.} \\ i \in \mathcal{S} \cap \pi & \textit{starting material of } \pi. \\ P_{it} = (i, e_1, v_1, e_2, v_2, ..., e_{|P_{it}|}, t) & \textit{simple it-path in } \pi. \\ r_{v,e} & \textit{retro yield} \end{array}$$

$$W_{\pi} = \sum_{i} \sum_{P_{it} \in \pi} \prod_{j=0}^{|P_{it}|} r_{v_j, e_{j+1}}$$

(2)

Cost Functions - Total Weight of Starting Materials

$$\begin{array}{rl} \pi & st\text{-hyperpath.} \\ \mathcal{S} & \text{set potential starting materials.} \\ i \in \mathcal{S} \cap \pi & \text{starting material of } \pi. \\ P_{it} = (i, e_1, v_1, e_2, v_2, ..., e_{|P_{it}|}, t) & \text{simple } it\text{-path in } \pi. \\ r_{v,e} & \text{retro yield} \end{array}$$

$$W_{\pi} = \sum_{i} \sum_{P_{it} \in \pi} \prod_{j=0}^{|P_{it}|} r_{v_{j}, e_{j+1}}$$
(2)

$$W(u) = \begin{cases} 0 & \text{if } u = s \\ 1 & \text{if } u \in S \\ \sum_{v \in T(p(u))} r_{v,p(u)} W(v) & \text{otherwise} \end{cases}$$

(3)

The Problem with EPL

The Problem with EPL

The Problem with EPL

Yens Algorithm ⁴

K shortest simple paths from s to t in a (standard) directed graph

⁴Finding the *k* Shortest Loopless Paths in a Network, Yen, Jin Y, 1971

Yens Algorithm ⁴

K shortest simple paths from s to t in a (standard) directed graph

 $\mathcal{P} = \{P | P \text{ is a path from } s \text{ to } t\}$ $P' \in \mathcal{P} \text{ is the best.}$ Partition $\mathcal{P} \setminus P'$ into |P'| disjoint sets, creating |P'| shortest path problems.

20/76

39/76

SOUTHERNDENMARK, DK

SOUTHERNDENMARK, DK

52/76

- Implementation details omitted
- Runtime : dominated by K · |V| Dijkstra calls (i.e., in any of the K iterations/partitionings max "length of current path" many Dijkstras (i.e., max. |V| many Dijkstras))

K Shortest Hyperpaths Algorithm⁵

Setup:
$$H = (V, E)$$
 directed hypergraph
 $s, t \in V$ s is hyperconnected to t .
 $\mathcal{P} = \{\pi | \pi \text{ is a hyperpath from } s \text{ to } t\}$
 $\pi_{st} \in \mathcal{P}$ is the shortest.

 π_{st} :

Topological ordering $(s, u_1, ..., u_{q-2}, u_{q-1}, u_t)$ Predecessor function $p: V_{\pi} \rightarrow E_{\pi}$ $\Rightarrow (p(u_1), p(u_2), ..., p(u_{q-1}), p(t))$

⁵Finding the K shortest hyperpaths, Nielsen et. al., 2005

Setup:
$$\mathcal{P} = \{\pi | \pi \text{ is a hyperpath from } s \text{ to } t\}$$

 $\pi_{st} \in \mathcal{P}$ is the shortest.
 $E_{\pi_{st}} = (p(u_1), p(u_2), ..., p(u_{q-1}), p(t))$

Partition $\mathcal{P} \setminus \{\pi_{st}\}$ to $\mathcal{P}^i, 1 \leq i \leq q$ s.t.:

$$\pi \in \mathcal{P}^{i}$$

$$\ddagger$$

$$E_{\pi} = (e_{1}, e_{2}, \dots, e_{m-1}, e_{m}, p(u_{i+1}), \dots, p(u_{q-2}), p(u_{q-1}), p(t)),$$

$$e_{m} \neq p(u_{i})$$

1st iteration $L = \{(H, \pi_1)\}$

2nd iteration $L = \{(H^5, \pi_2), (H^3, \pi_3)\}$

E

Backwards Branching

BACK-BRANCH $(H, \tilde{\pi})$ $\mathcal{B} = \emptyset$ 2 for i = 1 to q Let H^i be a new hypergraph 3 $\widetilde{H}^i V = \widetilde{H} V$ 4 // Remove hyperarc from of H5 $\widetilde{H}^{i}.E = \widetilde{H}.E \setminus \{\widetilde{\pi}.p(u_{i})\}$ 6 7 // Fix back tree 8 for j = i + 1 to q \widetilde{H}^i . BS $(u_i) = \{\widetilde{\pi}.p(u_i)\}$ 9 $\mathcal{B} = \mathcal{B} \cup \{\widetilde{H}^i\}$ 10 11 return \mathcal{B}

Running time: O(|V|(|V| + |E|))

K-SYNTHESIS(H, s, t, K)Let *L* be a new priority queue 1 $\pi = \text{SHORTESTPATH}(H, s, t)$ 2 3 INSERT $(L, (H, \pi))$ for k = 1 to K 4 5 if $L = \emptyset$ 6 break 7 $(H', \pi') = \text{EXTRACT-MIN}(L)$ 8 output π' 9 if k = K10 break for each H^i in BACK-BRANCH (H', π') 11 $\pi^{i} = \text{SHORTESTPATH}(H^{i}, s, t)$ 12 if $W(\pi^i) < \infty$ 13 INSERT $(L, (H^i, \pi^i))$ 14 Running time: $O(K|V|(|V| + |E|) + K \lg K)$

76/76