4. Complex Analysis,

 Rational and Meromorphic AsymptoticsAnalytic combinatorics overview
A. SYMBOLIC METHOD

1. OGFs
2. EGFs
3. MGFs
B. COMPLEX ASYMPTOTICS
\Rightarrow 4. Rational \& Meromorphic
4. Applications of R\&M
5. Singularity Analysis
6. Applications of SA
7. Saddle point
specification

Analytic combinatorics overview

To analyze properties of a large combinatorial structure:

1. Use the symbolic method (lectures 1 and 2).

- Define a class of combinatorial objects.
- Define a notion of size (and associated GF)
- Use standard constructions to specify the structure.
- Use a symbolic transfer theorem.

Result: A direct derivation of a GF equation.
2. Use complex asymptotics (starting with this lecture).

- Start with GF equation.
- Use an analytic transfer theorem.

Result: Asymptotic estimates of the desired properties.

A shift in point of view

GFs as analytic objects (complex)

Q. What happens when we assign complex values to a GF?

$$
f(z)=\frac{e^{-z}}{1-z}
$$

A. We can use a series representation (in a certain domain) that allows us to extract coefficients.

Same useful concepts:
Differentiation: Compute derivative term-by-term where series is valid. Singularities: Points at which series ceases to be valid.
Continuation: Use functional representation even where series may diverge.

GFs as analytic objects (complex)

Q. What happens when we assign complex values to a GF?

$$
f(z)=\frac{e^{-z}}{1-z}
$$

A. A surprise!

Serendipity
is not an accident
Singularities provide full information on growth of GF coefficients!

General form of coefficients of combinatorial GFs

First principle of coefficient asymptotics

The location of a function's singularities dictates the exponential growth of its coefficients.

Second principle of coefficient asymptotics

The nature of a function's singularities dictates the subexponential factor of the growth.

Examples (preview): GF		$\begin{aligned} & \text { GF } \\ & \text { type } \end{aligned}$	singularities		exponential growth	subexp factor	
		location	nature				
strings with no 00	$B_{2}(z)=\frac{1-z^{2}}{1-2 z-z^{3}}$		rational	$1 / \phi, 1 / \hat{\phi}$	pole	ϕ^{N}	$\frac{1}{\sqrt{5}}$
derangements	$D(z)=\frac{e^{-z}}{1-z}$	meromorphic	1	pole	$1 N$	e^{-1}	
Catalan trees	$G(z)=\frac{1+\sqrt{1-4 z}}{2}$	analytic	1/4	square root	$4 N$	$\frac{1}{4 \sqrt{\pi N^{3}}}$	

Theory of complex functions

Quintessential example of the power of abstraction.

Start by defining i to be the square root of -1 so that $i^{2}=-1$
are complex numbers real?

Continue by exploring natural definitions of basic operations

- Addition
- Multiplication
- Division
- Exponentiation
- Functions
- Differentiation
- Integration

Standard conventions

$z=x+i y$	
real part	$\Re z \equiv x$
imaginary part	$\Im z \equiv y$
absolute value	$\|z\| \equiv \sqrt{x^{2}+y^{2}}$
conjugate	$\bar{z}=x-i y$

Quick exercise: $z \bar{z}=|z|^{2}$

Correspondence with points in the plane

Analytic functions

Definition. A function $f(z)$ defined in Ω is analytic at a point z_{0} in Ω iff for z in an open disc in Ω centered at z_{0} it is representable by a power-series expansion $f(z)=\sum_{N \geq 0} c_{N}\left(z-z_{0}\right)^{N}$

Examples:

$$
\begin{array}{ll}
\frac{1}{1-z}=1+z+z^{2}+z^{3}+z^{4}+\ldots & \text { is analytic for }|z|<1 . \\
e^{z} \equiv 1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\ldots \quad \text { is analytic for }|z|<\infty .
\end{array}
$$

Aside (continued): plotting complex functions

is also an easy (and instructive!) programming exercise.

```
public class Plot2Dez
{
    public static void show(ComplexFunction f, int sz)
    {
        StdDraw.setCanvasSize(sz, sz);
        StdDraw.setXscale(0, sz);
    StdDraw.setYscale(0, sz);
    double scale = 2.5;
    for (int i = 0; i < sz; i++)
        for (int j = 0; j < sz; j++)
        {
            double x = ((1.0*i)/sz - .5)*scale;
            double y = ((1.0*j)/sz - . 5)*scale;
                Complex z = new Complex(x, y);
                double val = f.eval(z).abs()*10;
                int t;
                    if (val <
                0) t = 255;
                else if (val > 255) t = 0;
                    else t = 255 - (int) val;
                Color c = new Color(t, t, t);
                    StdDraw.setPenColor(c);
                StdDraw.pixel(i, j);
        }
    Color c = new Color(0, 0, 0);
    StdDraw.setPenColor(c);
    StdDraw.line(sz/2, 0, sz/2, sz);
    StdDraw.line(0, sz/2, sz, sz/2);
    StdDraw.show();
    }
}
```

```
public class Example implements ComplexFunction
{
    public Complex eval(Complex z)
    { // {1 \over 1+z^3}
        Complex one = new Complex(1, 0);
            Complex d = one.plus(z.times(z.times(z)));
            return d.reciprocal();
        }
    public static void main(String[] args)
    { Plot2D.show(new Example(), 512); }
}
```

arbitrary factor
to emphasize growth

Entire functions (analytic everywhere)

$$
1+z+z^{5}
$$

Plots of various rational functions

$$
\frac{1+z+z^{2}+z^{3}}{1-z-z^{2}-z^{3}-z^{4}}
$$

$\frac{1}{1-z^{5}}$

Meromorphic functions

are complex functions that can be expressed as the ratio of two analytic functions.

Note: All rational functions are meromorphic.

$$
\begin{array}{cl}
D(z)=\frac{e^{-z}}{1-z} \quad C(z)=\frac{1+\sqrt{1-4 z}}{2} & R(z)=\frac{1}{2-e^{z}} \quad B_{P}(z)=\frac{1+z+z^{2}+\ldots+z^{p-1}}{1-z-z^{2}-\ldots-z^{P}} \\
S_{r}(z)=\frac{z^{r}}{(1-z)(1-2 z) \ldots(1-r z)} & C(z)=\frac{1}{1-z} \ln \frac{1}{1-z} \quad I(z)=e^{z+z^{2} / 2}
\end{array}
$$

Approach:

- Use contour integration to expand into terms for which coefficient extraction is easy.
- Focus on the largest term to approximate.
[Same approach as for rationals, resulting in a more general transfer theorem.]

Meromorphic functions

Definition. A function $h(z)$ defined in Ω is meromorphic at z_{0} in Ω iff for z in a neighborhood of z_{0} with $z \neq z_{0}$ it can be represented as $f(z) / g(z)$, where $f(z)$ and $g(z)$ are analytic at z_{0}.

Useful facts:

- A function $h(z)$ that is meromorphic at z_{0} admits an expansion of the form

$$
h(z)=\frac{h_{-M}}{\left(z-z_{0}\right)^{M}}+\ldots+\frac{h_{-2}}{\left(z-z_{0}\right)^{2}}+\frac{h_{-1}}{\left(z-z_{0}\right)}+h_{0}+h_{1}\left(z-z_{0}\right)+h_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

and is said to have a pole of order M at z_{0}.

Proof sketch: If z_{0} is a zero of $g(z)$ then $g(z)=\left(z-z_{0}\right)^{M} G(z)$.
Expand the analytic function $f(z) / G(z)$ at z_{0}.

- The coefficient h_{-1} is called the residue of $h(z)$ at $z o$, written $\operatorname{Res}_{z=z_{0}} h(z)$.
- If $h(z)$ has a pole of order M at z_{0}, the function $\left(z-z_{0}\right)^{M} h(z)$ is analytic at z_{0}.

A function is meromorphic in Ω iff it is analytic in Ω except for a set of isolated singularities, its poles.

Meromorphic functions

Definition. A function $h(z)$ defined in Ω is meromorphic at z_{0} in Ω iff for z in a neighborhood of z_{0} with $z \neq z_{0}$ it can be represented as $f(z) / g(z)$, where $f(z)$ and $g(z)$ are analytic at z.
function

$$
1+z+z^{2}
$$

$\frac{1}{Z}$

$$
D(z)=\frac{e^{-z}}{1-z}
$$

region of meromorphicity

everywhere
everywhere but $z=0$
everywhere but $z=1$

$$
\frac{1}{1+z^{2}}
$$

everywhere but $z= \pm i$

$$
S_{r}(z)=\frac{z^{r}}{(1-z)(1-2 z) \ldots(1-r z)} \quad \text { everywhere but } z=1,1 / 2,1 / 3, \ldots
$$

$S_{r}(z)=\frac{z^{r}}{(1-z)(1-2 z) \ldots(1-r z)}$	everywhere but $z=1,1 / 2,1 / 3, \ldots$
$R(z)=\frac{1}{2-e^{z}}$	everywhere but $z=\ln 2 \pm 2 \pi \mathrm{ki}$

$$
R(z)=\frac{1}{2-e^{z}} \quad \text { everywhere but } z=\ln 2 \pm 2 \pi k i
$$

Plots of various meromorphic functions

AC transfer theorem for meromorphic GFs (leading term)

Theorem. Suppose that $h(z)=f(z) / g(z)$ is meromorphic in $|z| \leq R$ and analytic both at $z=0$ and at all points $|z|=R$. If α is a unique closest pole to the origin of $h(z)$ in R, then α is real and $\left[z^{N}\right] \frac{f(z)}{g(z)} \sim c \beta^{N} N^{M-1}$ where M is the order of $\alpha, c=(-1)^{M} \frac{M f(\alpha)}{\alpha^{M} g^{(M)}(\alpha)}$ and $\beta=1 / \alpha$.

Proof sketch for $M=1$:

- Series expansion (valid near α): $\quad h(z)=\frac{h_{-1}}{\alpha-z}+h_{0}+h_{1}(\alpha-z)+h_{2}(\alpha-z)^{2}+\ldots \longleftarrow$ elementary from Pringsheim's and
- One way to calculate constant: $\quad h_{-1}=\lim _{z \rightarrow \alpha}(\alpha-z) h(z)$
- Approximation at α :

$$
h(z) \sim \frac{h_{-1}}{\alpha-z}=\frac{1}{\alpha} \frac{h_{-1}}{1-z / \alpha}=\frac{h_{-1}}{\alpha} \sum_{N \geq 0} \frac{z^{N}}{\alpha^{N}}
$$

See next slide for calculation of c and $M>1$.

Notes:

- Error is exponentially small (and next term may involve periodicities due to complex roots).
- Result is the same as for rational functions.

Bottom line

Analytic transfer for meromorphic GFs: $f(z) / g(z) \sim c \beta^{N}$

- Compute the dominant pole α (smallest real with $g(z)=0$).
- (Check that no others have the same magnitude.)
- Compute the residue $h_{-1}=-f(\alpha) / g^{\prime}(\alpha)$.

Not order 1 if $g^{\prime}(\alpha)=0$. Adjust to (slightly) more complicated order M case.

- Constant c is h_{-1} / α.
- Exponential growth factor β is $1 / \alpha$

AC transfer for meromorphic GFs

Analytic transfer for meromorphic GFs: $f(z) / g(z) \sim c \beta^{N}$

- Compute the dominant pole α (smallest real with $g(z)=0$).
- (Check that no others have the same magnitude.)
- Compute the residue $h_{-1}=-f(\alpha) / g^{\prime}(\alpha)$.
- Constant c is h_{-1} / α.
- Exponential growth factor β is $1 / \alpha$

$$
h(z)=f(z) / g(z) \quad \alpha \quad h_{-1} \quad\left[z^{N}\right] h(z)
$$

Examples.

$$
\begin{array}{c|c|c|c}
\frac{z}{1-z-z^{2}} & \hat{\phi}=\frac{1}{\phi} & \frac{\hat{\phi}}{(1+2 \hat{\phi})}=\frac{\hat{\phi}}{\sqrt{5}} & \sim \frac{1}{\sqrt{5}} \phi^{N} \\
\hline \frac{e^{-z}}{1-z} & 1 & \frac{1}{e} & \frac{1}{e} \\
\hline \frac{e^{-z-z^{2} / 2-z^{3} / 3}}{1-z} & 1 & \frac{1}{e^{H_{3}}} & \frac{1}{e^{H_{3}}}
\end{array}
$$

$\hat{\phi}=\frac{\sqrt{5}-1}{2}$
$\phi=\frac{\sqrt{5}+1}{2}$

General form of coefficients of combinatorial GFs (revisited)

First principle of coefficient asymptotics

The location of a function's singularities dictates the exponential growth of its coefficients.

Second principle of coefficient asymptotics
The nature of a function's singularities dictates the subexponential factor of the growth.

When $\mathrm{F}(\mathrm{z})$ is a meromorphic function $f(z) / g(z)$

- If the smallest real root of $g(z)$ is α then the exponential growth factor is $1 / \alpha$.
- If α is a pole of order M, then the subexponential factor is $c N^{M-1}$.

