ANALYTIC COMBINATORICS

PART TWO

CAMBRIDGE

http://ac.cs.princeton.edu

4. Complex Analysis, Rational and Meromorphic Asymptotics

Analytic combinatorics overview

Analytic combinatorics overview

To analyze properties of a large combinatorial structure:

- 1. Use the symbolic method (lectures 1 and 2).
 - Define a *class* of combinatorial objects.
 - Define a notion of *size* (and associated GF)
 - Use standard constructions to *specify* the structure.
 - Use a *symbolic* transfer theorem.

Result: A direct derivation of a GF equation.

- 2. Use complex asymptotics (starting with this lecture).
 - Start with GF equation.
 - Use an *analytic* transfer theorem.

Result: Asymptotic estimates of the desired properties.

A shift in point of view

GFs as analytic objects (complex)

A. We can use a *series representation* (in a certain domain) that allows us to extract coefficients.

Same useful concepts:

Differentiation: Compute derivative term-by-term where series is valid.

Singularities: Points at which series ceases to be valid.

Continuation: Use functional representation even where series may diverge.

GFs as analytic objects (complex)

General form of coefficients of combinatorial GFs

First principle of coefficient asymptotics

The *location* of a function's singularities dictates the *exponential growth* of its coefficients.

Second principle of coefficient asymptotics

The *nature* of a function's singularities dictates the *subexponential factor* of the growth.

Examples (preview):		GF	GF type	singularities		exponential	subexp.	
				location	nature	growth	factor	
	strings with no 00	$B_2(z)$	$= \frac{1-z^2}{1-2z-z^3}$	rational	$1/\phi, 1/\hat{\phi}$	pole	ϕ^{N}	$\frac{1}{\sqrt{5}}$
	derangements	D($z) = \frac{e^{-z}}{1-z}$	meromorphic	1	pole	ן <i>א</i>	e^{-1}
	Catalan trees	G(z)	$=\frac{1+\sqrt{1-4z}}{2}$	analytic	1/4	square root	4 <i>^N</i>	$\frac{1}{4\sqrt{\pi N^3}}$

Theory of complex functions

Quintessential example of the power of abstraction.

Start by defining *i* to be the square root of -1 so that $i^2 = -1$

Continue by exploring natural definitions of basic operations

- Addition
- Multiplication
- Division
- Exponentiation
- Functions
- Differentiation
- Integration

are complex numbers

real?

Standard conventions

Correspondence with points in the plane

Quick exercise: $z\bar{z} = |z|^2$

15

Analytic functions

Definition. A function f(z) defined in Ω is *analytic* at a point z_0 in Ω iff for z in an open disc in Ω centered at z_0 it is representable by a power-series expansion $f(z) = \sum_{N \ge 0} c_N (z - z_0)^N$

Examples:

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + z^4 + \dots$$
 is analytic for $|z| < 1$.

$$e^{z} \equiv 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \dots$$
 is analytic for $|z| < \infty$.

Aside (continued): plotting complex functions

is also an easy (and instructive!) programming exercise.

Entire functions (analytic everywhere)

 $1 + z + z^5$

our convention: highlight the 2.5 by 2.5 square centered at the origin when plotting a bigger square

Plots of various rational functions

Meromorphic functions

are complex functions that can be expressed as the ratio of two *analytic functions*.

Note: All rational functions are meromorphic.

$$D(z) = \begin{pmatrix} e^{-z} \\ 1-z \end{pmatrix} \quad G(z) = \frac{1+\sqrt{1-4z}}{2} \qquad R(z) = \frac{1}{2-e^{z}} \qquad B_P(z) = \frac{1+z+z^2+\ldots+z^{P-1}}{1-z-z^2-\ldots-z^P} \\ S_r(z) = \begin{pmatrix} \frac{z^r}{(1-z)(1-2z)\ldots(1-rz)} \end{pmatrix} \qquad C(z) = \frac{1}{1-z}\ln\frac{1}{1-z} \qquad I(z) = e^{z+z^2/2} \\ \end{array}$$

Approach:

- Use *contour integration* to expand into terms for which coefficient extraction is easy.
- Focus on the largest term to approximate.

[Same approach as for rationals, resulting in a more general transfer theorem.]

Meromorphic functions

Definition. A function h(z) defined in Ω is *meromorphic* at z_0 in Ω iff for z in a neighborhood of z_0 with $z \neq z_0$ it can be represented as f(z)/g(z), where f(z) and g(z) are analytic at z_0 .

Useful facts:

• A function h(z) that is meromorphic at z_0 admits an expansion of the form

$$h(z) = \frac{h_{-M}}{(z-z_0)^M} + \ldots + \frac{h_{-2}}{(z-z_0)^2} + \frac{h_{-1}}{(z-z_0)} + h_0 + h_1(z-z_0) + h_2(z-z_0)^2 + \ldots$$

and is said to have a pole of order M at z_0 .

Proof sketch: If z_0 is a zero of g(z) then $g(z) = (z - z_0)^M G(z)$. Expand the analytic function f(z)/G(z) at z_0 .

- The coefficient h_{-1} is called the residue of h(z) at z_0 , written Res h(z).
- If h(z) has a pole of order M at z_0 , the function $(z z_0)^M h(z)$ is analytic at z_0 .

A function is meromorphic in Ω iff it is analytic in Ω except for a set of isolated singularities, its poles.

Meromorphic functions

Definition. A function h(z) defined in Ω is *meromorphic* at z_0 in Ω iff for zin a neighborhood of z_0 with $z \neq z_0$ it can be represented as f(z)/g(z), where f(z) and g(z) are analytic at z_0 .

function	region of meromorphicity
$1 + z + z^2$	everywhere
$\frac{1}{z}$	everywhere but $z = 0$
$D(z) = \frac{e^{-z}}{1-z}$	everywhere but $z = 1$
$\frac{1}{1+z^2}$	everywhere but $z = \pm i$
$S_r(z) = \frac{z^r}{(1-z)(1-2z)\dots(1-rz)}$	everywhere but <i>z</i> = 1, 1/2, 1/3,
$R(z) = \frac{1}{2 - e^z}$	everywhere but $z = \ln 2 \pm 2\pi ki$

Plots of various meromorphic functions

AC transfer theorem for meromorphic GFs (leading term)

Theorem. Suppose that h(z) = f(z)/g(z) is meromorphic in $|z| \le R$ and analytic both at z = 0

and at all points |z| = R. If α is a unique closest pole to the origin of h(z) in R, then α is real and $[z^N] \frac{f(z)}{g(z)} \sim c\beta^N N^{M-1}$ where *M* is the order of α , $c = (-1)^M \frac{Mf(\alpha)}{\alpha^M g^{(M)}(\alpha)}$ and $\beta = 1/\alpha$.

Proof sketch for M = 1:

• Series expansion (valid near α): $h(z) = \frac{h_{-1}}{\alpha - z} + h_0 + h_1(\alpha - z) + h_2(\alpha - z)^2 + \dots$ elementary from Pringsheim's and coefficient extraction theorems

• One way to calculate constant:
$$h_{-1} = \lim_{n \to \infty} h_{-1}$$

• Approximation at α :

$$h_{-1} = \lim_{z \to \alpha} (\alpha - z)h(z)$$

$$h(z) \sim \frac{h_{-1}}{\alpha - z} = \frac{1}{\alpha} \frac{h_{-1}}{1 - z/\alpha} = \frac{h_{-1}}{\alpha} \sum_{N \ge 0} \frac{z^N}{\alpha^N}$$

See next slide for calculation of c and M > 1.

Notes:

- Error is *exponentially small* (and next term may involve periodicities due to complex roots).
- Result is the same as for rational functions.

Bottom line

Analytic transfer for meromorphic GFs: $f(z)/g(z) \sim c \beta^N$

- Compute the dominant pole α (smallest real with g(z) = 0).
- (Check that no others have the same magnitude.)
- Compute the residue $h_{-1} = -f(\alpha)/g'(\alpha)$.
- Constant c is h_{-1} / α .

Not order 1 if $g'(\alpha) = 0$. Adjust to (slightly) more complicated order *M* case.

• Exponential growth factor β is $1/\alpha$

AC transfer for meromorphic GFs

Analytic transfer for meromorphic GFs: $f(z)/g(z) \sim c \beta^N$

- Compute the dominant pole α (smallest real with g(z) = 0).
- (Check that no others have the same magnitude.)
- Compute the residue $h_{-1} = -f(\alpha)/g'(\alpha)$.
- Constant c is h_{-1} / α .
- Exponential growth factor β is $1/\alpha$

	h(z) = f(z)/g(z)	α	h_{-1}	$[z^N]h(z)$	$\sqrt{5} - 1$
Examples.	$\frac{z}{1-z-z^2}$	$\hat{\phi} = \frac{1}{\phi}$	$\frac{\hat{\phi}}{(1+2\hat{\phi})} = \frac{\hat{\phi}}{\sqrt{5}}$	$\sim \frac{1}{\sqrt{5}}\phi^N$	$\hat{\phi} = \frac{\sqrt{3-1}}{2}$ $\phi = \frac{\sqrt{5+1}}{2}$
	$\frac{e^{-z}}{1-z}$	1	$\frac{1}{e}$	$\frac{1}{e}$	Ĺ
	$\frac{e^{-z-z^2/2-z^3/3}}{1-z}$	1	$\frac{1}{e^{H_3}}$	$\frac{1}{e^{H_3}}$	

General form of coefficients of combinatorial GFs (revisited)

First principle of coefficient asymptotics

The *location* of a function's singularities dictates the *exponential growth* of its coefficients.

Second principle of coefficient asymptotics

The *nature* of a function's singularities dictates the *subexponential factor* of the growth.

When F(z) is a meromorphic function f(z)/g(z)

- If the smallest real root of g(z) is α then the exponential growth factor is $1/\alpha$.
- If α is a pole of order *M*, then the subexponential factor is CN^{M-1} .