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Analytic combinatorics overview

To analyze properties of a large combinatorial structure:
Ex. Derangements

1. Use the symbolic method (lectures 1 and 2). Specification
* Define a class of combinatorial objects.
» Define a notion of size (and associated GF)

D=SET(CYGi(Z))

« Use standard constructions to specify the structure. Symbolic transfer

» Use a symbolic transfer theorem. l
Result: A direct derivation of a GF equation. oz

GF equation D(z) =
11—z
2. Use complex asymptotics (starting with this lecture).
) ) Analytic transfer

« Start with GF equation.

* Use an analytic transfer theorem. l :
Result: Asymptotic estimates of the desired properties. Dy ~ —



A shift in point of view

@

Symbolic transfer

v

@

Analytic transfer

v

generating functions are treated as formal objects

formal analytic
object! object!

\ generating functions are treated as analytic objects



GFs as analytic objects (complex)

Q. What happens when we assign complex values to a GF?

., stay tuned for
e interpretation ~

f(Z) = 1_ 5 of plot \

\ 4

singularity

A. We can use a series representation (in a certain domain) that allows us to extract coefficients.

Same useful concepts:
Differentiation: Compute derivative term-by-term where series is valid.
Singularities: Points at which series ceases to be valid.
Continuation: Use functional representation even where series may diverge.



GFs as analytic objects (complex)

Q. What happens when we assign complex values to a GF?

stay tuned for

e * interpretation
f(Z) = 1_5 of plot _\

\ 4

singularity

A. A surprise!

Serendipity
is not
an accident

Singularities provide full information on growth of GF coefficients!

“Singularities provide a royal road to coefficient asymptotics.”




General form of coefficients of combinatorial GFs

First principle of coefficient asymptotics

subexponential The location of a function’s singularities dictates
N N / factor the exponential growth of its coefficients.
Z7]F(z) = ATO(N)

exponential / Second principle of coefficient asymptotics

growth factor C . .
The nature of a function’s singularities dictates
the subexponential factor of the growth.

Examples (preview): CE GF singularities exponential subexp.
type location  nature  growth factor

strings with 1 -2 rational 1 174 | N 1

no 00 32(2)21_22_23 ationa /¢7 /Qb pole ¢ \/g

e—Z
derangements D(z) = T3 meromorphic ] pole 1N e~ !
1T++1 -4z 1
Catalan trees G(z) = analytic 1/4 square 4N

2 root 4 /TCN3



Theory of complex functions

Quintessential example of the power of abstraction.

Start by defining i to be the square root of —1 so that i2 = —1

Continue by exploring natural definitions of basic operations
« Addition
« Multiplication
* Division
* Exponentiation
* Functions
« Differentiation
* Integration

are complex
numbers
real ?




Standard conventions

Correspondence with points in the plane

Z=X+Iy
(x, y) represents
real part Rz=x e Z=Xx+1y
¢
imaginary part Sz = y /\ iy
/ N X
absolute value 1z| = \/x* + V2 ;
conjugate Z=X—1y
¢
(x, —y) represents
Quick exercise: zZ = |z|* z=Xx-1ly



Analytic functions

Definition. A function f (z) defined in Q is analytic at a point zo in Q iff for zin an open disc in

Q centered at zoit is representable by a power-series expansion  f(z) = Z cn(z — zo)N
N>0

Examples:

=14+z+22+2+2"+. .. is analytic for |z| < 1 .

1—7

z2 2

z
A . .
e:1+ﬂ+i+§+ﬂ+'” is analytic for |z] < o0 .



Aside (continued): plotting complex functions

is also an easy (and instructivel) programming exercise.

public class Plot2Dez public class Example implements ComplexFunction
{ {

public static void show(ComplexFunction f, int sz) public Complex eval(Complex z)

{ { // {1 \over 1+zA3}
StdDraw.setCanvasSize(sz, sz); Complex one = new Complex(1l, 0);
StdDraw.setXscale(0, sz); Complex d = one.plus(z.times(z.times(z)));
StdDraw.setYscale(0, sz); return d.reciprocal();
double scale = 2.5; }
for (int i = 0; i < sz; i++) public static void main(String[] args)

for (int j = 0; j < sz; j++) { Plot2D.show(new Example(), 512); }
{ }

double x = ((1.0%i)/sz - .5)*scale;
double y = ((1.0*j)/sz - .5)*scale;

our convention:

Complex z = new Complex(x, y); plots are in the 2.5 by 2.5 square
double val = f.eval(z).abs()*10; centered at the origin
int t; l

if  (val < 0) t = 255;

else if (val > 255) t = 0; arbitrary factor 1

else t = 255 - (int) val; to emphasize growth - 5

Color ¢ = new Color(t, t, t); 1 —FAZ3

StdDraw.setPenColor(c);
StdDraw.pixel(i, j);

} -
Color c = new Color(0, 0, 0); _——
StdDraw.setPenColor(c); singularities
StdDraw.1ine(sz/2, 0, sz/2, sz); (where |f| » «)
StdDraw.1ine(0, sz/2, sz, sz/2); darkness of pixel at (x y)//////l
}Sthraw.show(); is proportional to |[f(x + iy)| .




Entire functions (analytic everywhere)

1+z4+2

our convention:
highlight the 2.5 by 2.5 square
centered at the origin
when plotting a bigger square

2
? 17 /2
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Plots of various rational functions

il
1—z—22—-273 -7

Z4

(1—=2)(1=22)(1 —32)(1 —42)
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Meromorphic functions

are complex functions that can be expressed as the ratio of two analytic functions.

Note: All rational functions are meromorphic.

2 P—1
D(z) Glz) = 1 V142 V;—“Z R(2) Bp(2) :G+zz+zzz+. : ,+22P>
z' 1 1 2
5r(z)i@—z)(1 —22)...(1 —rzD =773 (2) = e*t7 /2

Approach:

« Use contour integration to expand into terms for which coefficient extraction is easy.

« Focus on the largest term to approximate.

[Same approach as for rationals, resulting in a more general transfer theorem.]
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Meromorphic functions

Definition. A function h(z) defined in Q is meromorphic at zo in Q iff for zin a neighborhood

of zo with z # zo it can be represented as f(2)/g(z), where f(z) and g(z) are analytic at zo.

Useful facts:

e A function h(2) that is meromorphic at zo admits an expansion of the form

h_/\// h—2 h—1
h(z) = ———— + ... ho + hi(z — hy(z — 79)% + ...
(2) (Z—ZO)M+ +(z—zo)2 (z—zo)+ 0+ hi1(z—20) + ha2(z — 20)" +
and is said to have a pole of order M at zo. Proof sketch: If zo is a zero of g(2) then g(2) = (z — zo) G(2).

Expand the analytic function f(2)/G(2) at zo.

« The coefficient h_; is called the residue of h(2) at zo, written Res h(Zz).
=70

* If h(2) has a pole of order M at zo, the function (z — zo)™ h(2) is analytic at zo.

A function is meromorphic in Q iff it is analytic in Q except for a set of isolated singularities, its poles.
51



Definition. A function h(z) defined in
Q is meromorphic at zo in Q iff for z

in a neighborhood of zo with z # zo it
can be represented as f (2)/g(2),

where f (2) and g(2) are analytic at zo.

function

1—|—Z—|—z2

(1T =rz)

region of meromorphicity

everywhere

everywhere but z=0

everywhere but z=1

everywhere but z = +i

everywhere but z=1, 1/2, 1/3, ...

everywhere but z=1n2 + 21rki
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Plots of various meromorphic functions

1
1—2°

_I o
2 —¢€?
|
S
| dezk 7”7 e
1—z—-22-23-74
e

Z4

(1 —2)(1 —22)(1 - 32)(1 — 42)
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AC transfer theorem for meromorphic GFs (leading term)

Theorem. Suppose that h(z)= f(2)/g(z) is meromorphic in |z| < R and analytic both at z=0

and at all points |z| = R. If « is a unique closest pole to the origin of h(z) in R, then « is real

and@’\’]% ~ CBN/\/M)where M is the order of «, €: (_1)/\4@/\4/\;{/54?2@9 and B = 1/a.

Proof sketch for M= 1:
elementary from Pringsheim’s and

h_
* Series expansion (valid near &): h(z) = L+ hy + hy (a—2)+hy(a—2)"+...

(—
a—=7 coefficient extraction theorems
- One way to calculate constant:  h_; = lim (a — z)h(2)
Z—Q
L h_ 1 h_ h_ zN
* Approximation at «: h(z) ~ - v _ -l Z —
a—z al—-z/a a =~ a

See next slide for calculation of cand M > 1.

Notes:
* Error is exponentially small (and next term may involve periodicities due to complex roots).

« Result is the same as for rational functions.

59



Bottom line

Analytic transfer for meromorphic GFs: f(2)/g(z) ~ c BN
* Compute the dominant pole o (smallest real with g(z) = 0).
* (Check that no others have the same magnitude.)

* Compute the residue h-; = —f(a)/g'(a).\ en R | It =0

« Constant c is h_1 /«. Adjust to (slightly) more

* Exponential growth factor B is 1/«

complicated order M case.

6l



AC transfer for meromorphic GFs

Analytic transfer for meromorphic GFs: f(2)/g(2) ~ c BN

* Compute the dominant pole « (smallest real with g(z) = 0).
* (Check that no others have the same magnitude.)

« Compute the residue h-1 = —f()/g'().
* Constant c is h-1 /«. A

* Exponential growth factor B is 1/«

h(2) = f(2)/9(2) o h-1 [zN]h(2)
Examples. R X G V5 — 1
1—z— 22 6 (1+29) V5 V5 ¢:\/§+1
2
e—Z
1 — —
11—z e e
e—z—22 /2—722/3 1 1
1—-2z ] efhs efts

62



General form of coefficients of combinatorial GFs (revisited)

First principle of coefficient asymptotics

subexponential The location of a function’s singularities dictates
N N / factor the exponential growth of its coefficients.
Z7]F(z) = ATO(N)

exponential / Second principle of coefficient asymptotics

growth factor C . .
The nature of a function’s singularities dictates
the subexponential factor of the growth.

When F(z) is a meromorphic function f(2)/g(2)
* If the smallest real root of g(2) is a then the exponential growth factor is 1/a.

*If « is a pole of order M, then the subexponential factor is cNM-T1,
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