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SYMBOLIC METHOD

COMPLEX ASYMPTOTICS



Analytic combinatorics overview

1. Use the symbolic method (lectures 1 and 2).

• Define a class of combinatorial objects.

• Define a notion of size (and associated GF)

• Use standard constructions to specify the structure.

• Use a symbolic transfer theorem.

Result: A direct derivation of a GF equation.

To analyze properties of a large combinatorial structure:
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Speci!cation

GF equation

D = SET (CYC>1( Z ))

+(a) =
L−a

�− a

Analytic transfer
2. Use complex asymptotics (starting with this lecture). 

• Start with GF equation.

• Use an analytic transfer theorem.
Result: Asymptotic estimates of the desired properties.

Asymptotics
+5 ∼ �

L

Symbolic transfer

Ex. Derangements



A shift in point of view

GF

generating functions are treated as formal objects
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Analytic transfer

Speci!cation

GF equation

Asymptotics

Symbolic transfer

generating functions are treated as analytic objects

analytic
object!

formal
object!



GFs as analytic objects (complex)
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A. We can use a series representation (in a certain domain) that allows us to extract coefficients.

Same useful concepts:

Compute derivative term-by-term where series is valid.
Points at which series ceases to be valid. 
Use functional representation even where series may diverge.

Differentiation:
Singularities:

Continuation: 

Q. What happens when we assign complex values to a GF? 

singularity

stay tuned for
interpretation 

of plotM(a) =
L�a

� � a



GFs as analytic objects (complex)
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A. A surprise!

Q. What happens when we assign complex values to a GF? 

singularity

stay tuned for
interpretation 

of plotM(a) =
L�a

� � a

Singularities provide full information on growth of GF coefficients!

“Singularities provide a royal road to coefficient asymptotics.”

Serendipity
is not

an accident



General form of coefficients of combinatorial GFs

First principle of coefficient asymptotics

The location of a function’s singularities dictates 
the exponential growth of its coefficients.

exponential
growth factor

subexponential
factor

GF GF
type

singularitiessingularities exponential
growth

subexp.
factorGF GF

type location nature
exponential

growth
subexp.
factor

strings with
no 00 rational pole

derangements meromorphic 1 pole 1N

Catalan trees analytic square 
root 4N

Examples (preview):
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[a5]-(a) = (5θ(5)

Second principle of coefficient asymptotics

The nature of a function’s singularities dictates
the subexponential factor of the growth.

)�(a) =
�− a�

�− �a− a�
�/φ, �/φ̂ φ5

�√
�

+(a) =
L�a

� � a
L−�
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Theory of complex functions

Quintessential example of the power of abstraction.

1 + i
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Continue by exploring natural definitions of basic operations

• Addition
• Multiplication
• Division
• Exponentiation
• Functions
• Differentiation
• Integration

are complex 
numbers

real ?Start by defining i to be the square root of −1 so that i 2 = −1



Standard conventions
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Correspondence with points in the plane

|z|

(x, y) represents
z = x + iyreal part

imaginary part

absolute value

conjugate ā = _ � P`

|a| �
�

_� + `�

�a � _

�a � `

a = _ + P`
x

y

(x, −y) represents
z = x − iyaā = |a|�Quick exercise:



Analytic functions

Examples:
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�
� � a

= � + a + a� + a� + a� + . . . is analytic for |z| < 1 .

La � � +
a
�!

+
a�

�!
+

a�

�!
+

a�

�!
+ . . . is analytic for |z| < ∞ .

Definition. A function f (z ) defined in Ω is analytic at a point z0 in Ω iff for z in an open disc in 

Ω centered at z0 it is representable by a power-series expansion M(a) =
�

5��

J5(a � a�)5



�
� + a�

Aside (continued): plotting complex functions
is also an easy (and instructive!) programming exercise.
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public class Plot2Dez
{ 
  public static void show(ComplexFunction f, int sz)
  {
   StdDraw.setCanvasSize(sz, sz);
   StdDraw.setXscale(0, sz);
   StdDraw.setYscale(0, sz);
   double scale = 2.5;
   for (int i = 0; i < sz; i++)
      for (int j = 0; j < sz; j++)
      {
         double x = ((1.0*i)/sz - .5)*scale;
         double y = ((1.0*j)/sz - .5)*scale;
         Complex z = new Complex(x, y);
         double val = f.eval(z).abs()*10;
         int t;
         if  (val <   0) t = 255;
         else if (val > 255) t = 0;
         else t = 255 - (int) val;
         Color c = new Color(t, t, t);
         StdDraw.setPenColor(c);
         StdDraw.pixel(i, j);
      }
   Color c = new Color(0, 0, 0);
   StdDraw.setPenColor(c);
   StdDraw.line(sz/2, 0, sz/2, sz);
   StdDraw.line(0, sz/2, sz, sz/2);
   StdDraw.show();
  }
}

public class Example implements ComplexFunction
{
    public Complex eval(Complex z)
    {  // {1 \over 1+z^3}
        Complex one = new Complex(1, 0);
        Complex d = one.plus(z.times(z.times(z)));
        return d.reciprocal();
    }
   public static void main(String[] args)
   {  Plot2D.show(new Example(), 512);  }
}

arbitrary  factor
to emphasize growth

darkness of pixel at (x, y)
is proportional to |f (x + iy )|

our convention:
plots are in the 2.5 by 2.5 square

centered at the origin

singularities
(where |f | → ∞)



Entire functions (analytic everywhere)
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� + a + a�

La+a�/�

our convention:
highlight the 2.5 by 2.5 square

centered at the origin
when plotting a bigger square



Plots of various rational functions
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a�

(� � a)(� � �a)(� � �a)(� � �a)

�
� � a

�
� + a�

�
� � a�

�+ a+ a� + a�

�− a− a� − a� − a�



9(a) =
�

� � La
.(a) =

�+
√
�− �a
�

:Y(a) =
aY

(� � a)(� � �a) . . . (� � Ya)

)7(a) =
�+ a+ a� + . . .+ a7−�

�− a− a� − . . .− a7
+(a) =

L�a

� � a

0(a) = La+a�/�*(a) =
�

� � a
ln

�
� � a

Meromorphic functions

are complex functions that can be expressed as the ratio of two analytic functions.
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Approach:

• Use contour integration to expand into terms for which coefficient extraction is easy.

• Focus on the largest term to approximate.

[Same approach as for rationals, resulting in a more general transfer theorem.] 

Note: All rational functions are meromorphic.



Useful facts: 

• A function h(z) that is meromorphic at z0 admits an expansion of the form

and is said to have a pole of order M at z0.

• The coefficient h−1 is called the residue of h(z) at z0, written                  .

• If h(z) has a pole of order M at z0, the function (z − z0)M h(z) is analytic at z0.

Meromorphic functions
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Definition. A function h(z ) defined in Ω is meromorphic at z0 in Ω iff for z in a neighborhood 

of z0 with z ≠ z0 it can be represented as f (z)/g(z), where f (z) and g(z) are analytic at z0.

9LZ
a=a�

O(a)

O(a) =
O�4

(a� a�)4
+ . . . +

O��

(a� a�)�
+

O��

(a� a�)
+ O� + O�(a� a�) + O�(a� a�)� + . . .

A function is meromorphic in Ω iff it is analytic in Ω except for a set of isolated singularities, its poles. 

Proof sketch: If z0 is a zero of g(z) then g(z) = (z − z0)M G(z).

                     Expand the analytic function f (z)/G(z) at z0.



Meromorphic functions

function region of meromorphicity

everywhere

everywhere but z = 0

everywhere but z = 1

everywhere but z = ±i

everywhere but z = 1, 1/2, 1/3, ...

everywhere but z = ln2 ± 2πki
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Definition. A function h(z ) defined in 

Ω is meromorphic at z0 in Ω iff for z 

in a neighborhood of z0 with z ≠ z0 it 

can be represented as f (z)/g(z), 
where f (z) and g(z) are analytic at z0.

� + a + a�

�
a

+(a) =
L�a

� � a

�
� + a�

:Y(a) =
aY

(� � a)(� � �a) . . . (� � Ya)

9(a) =
�

� � La



Plots of various meromorphic functions
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�
� � a�

�+ a+ a� + a�

�− a− a� − a� − a�

a�

(� � a)(� � �a)(� � �a)(� � �a)

L�a

� � a

�
� � La



AC transfer theorem for meromorphic GFs (leading term)
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Theorem. Suppose that h (z )= f (z)/g(z) is meromorphic in |z | ≤ R and analytic both at z = 0 

and at all points |z | = R. If α is a unique closest pole to the origin of h (z ) in R, then α is real 

and                                 where M is the order of α,                                     and β = 1/α.              

Proof sketch for M = 1:

• Series expansion (valid near α): 

• One way to calculate constant:

• Approximation at α: =
O��

�

�

5��

a5

�5O(a) � O��

� � a

O�� = lim
a��

(� � a)O(a)

O(a) =
O��

� � a
+ O� + O�(� � a) + O�(� � a)� + . . .

=
�
�

O��

� � a/�

J = (��)4
4M(�)

�4N(4)(�)

See next slide for calculation of c and M > 1.

Notes:

• Error is exponentially small (and next term may involve periodicities due to complex roots).

• Result is the same as for rational functions.

elementary from Pringsheim’s and 

coefficient extraction theorems

[a5]
M(a)
N(a)

� J�554��



Analytic transfer for meromorphic GFs: f (z)/g (z) ~ c βN

• Compute the dominant pole α (smallest real with g(z) = 0).

• (Check that no others have the same magnitude.)

• Compute the residue h−1 = −f (α)/g' (α).

• Constant c is h−1 /α.

• Exponential growth factor β is 1/α

Bottom line
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Not order 1 if g'(α) = 0.
Adjust to (slightly) more 

complicated order M case.

Symbolic transfer

Analytic transfer

Speci!cation

GF equation

Asymptotics



AC transfer for meromorphic GFs
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h(z) = f (z)/g(z) α h−1 [zN ]h(z)

1

1

Examples. 

�
L

�
L

L�a

� � a

L�a�a�/��a�/�

� � a

�
L/�

�
L/�

Analytic transfer for meromorphic GFs: f (z)/g (z) ~ c βN

• Compute the dominant pole α (smallest real with g(z) = 0).

• (Check that no others have the same magnitude.)

• Compute the residue h−1 = −f (α)/g' (α).

• Constant c is h−1 /α.

• Exponential growth factor β is 1/α
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a
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General form of coefficients of combinatorial GFs (revisited)

First principle of coefficient asymptotics

The location of a function’s singularities dictates 
the exponential growth of its coefficients.

exponential
growth factor

subexponential
factor
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[a5]-(a) = (5θ(5)

Second principle of coefficient asymptotics

The nature of a function’s singularities dictates
the subexponential factor of the growth.

When F(z) is a meromorphic function f (z)/g (z)

• If the smallest real root of g (z) is α then the exponential growth factor is 1/α.

• If α is a pole of order M, then the subexponential factor is cNM−1.


