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Boltzmann sampling

Carine Pivoteau

LIP6 – UPMC

based on work by P. Duchon, P. Flajolet, E. Fusy,
G. Louchard, C. Pivoteau and G. Schaeffer

colors to disconnect certain edges at their extremity, so as to leave a ternary
tree.

An irreducible triangulation of the 4-gon is rooted by choosing one of its 4 border
edges and orienting this edge with the infinite face on its right. This well known
operation eliminates symmetries of the triangulation.

Corollary 2. The closure induces a 4-to-(2n+2) correspondence between the set
An of rooted ternary trees with n inner nodes and the set Tn of rooted irreducible
triangulations of the 4-gon with n inner vertices. In other words, An×{1, . . . , 4}
is in bijection with Tn × {1, . . . , 2n + 2}.

As an enumerative consequence, |Tn| = 4
2n+2 |An| = 4(3n)!

(2n+2)!n! .

Proof. The proof follows easily from the bijection stated in Theorem 3 and from
the fact that a ternary tree with n inner nodes has 2n + 2 leaves and an object
of Tn has 4 edges (the 4 border edges) to carry the root.

4.2 Applications

Fig. 5. A triangulation with 200 vertices embedded with Algorithms Transversal-
Draw and CompactTransversalDraw.

The closure-bijection has several applications. A first one is a linear time
algorithm to perform uniform random sampling of objects of Tn, using the fact
that rooted ternary trees with n inner nodes can readily be uniformly sam-
pled using parenthesis words. A thorough study of such sampling algorithms is
given in [12]. In addition, sampled objects of Tn are naturally endowed, through
the closure, with their minimal transversal edge-partition. Hence, we can easily
run face-counting algorithms TransversalDraw and CompactTransver-
salDraw on the sampled objects. Performing simulations on objects of large
size (n ≈ 50000), it was observed by the author that the size of the grid is al-
ways approximately n

2 × n
2 with TransversalDraw and n

2 (1 − α) × n
2 (1 − α)

with CompactTransversalDraw, where α ≈ 0.18. It turns out that the size
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Random generation: different approaches

Fixed size random uniform generation:
Ad hoc methods

bijections, surjections, ...
A = φ(B) and ΓB(n) ⇒ random sampler ΓA(n)
an = f(an−1) ⇒ incremental algorithm ΓA(n)

rejection
A ⊂ B and ΓB(n) ⇒ random sampler ΓA(n)

Recursive method : counting + recursive process
Nijenhuis, Wilf, 1978
Flajolet, Zimmermann, Van Cutsem, 1994

preprocessing time (to compute g.f. coefficients): O(n2)
random generation time : O(n log n)

Approximate size random uniform generation:
Boltzmann sampling...
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Basic constructions
Labelled sets ans cycles
Back to unlabelled

Boltzmann method

Random sampling under Boltzmann model
approximate size sampling,
size distribution spread over the whole combinatorial class,
but uniform for a sub-class of objects of the same size,
control parameter,
automatized sampling: the sampler is compiled from
specification automatically,
very large objects can be sampled.
→ large scale simulations
→ observation of random structures limit properties...

Boltzmann samplers for the random generation of combinatorial structures.
P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer. Combinatorics, Probability
and Computing, 13(4-5):577-625, 2004. Special issue on Analysis of Algorithms.

Boltzmann sampling of unlabelled structures. Ph. Flajolet, E. Fusy, C. Pivoteau.
Proceedings of ANALCO07, january 2007.
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Basic constructions
Labelled sets ans cycles
Back to unlabelled

Model definition

Definition
In the unlabelled case, Boltzmann model assigns to any object
c ∈ C the following probability:

Px(c) =
x|c|

C(x)

In the labelled case, this probability becomes:

Px(c) =
1

Ĉ(x)
x|c|

|c|!

A free Boltzmann sampler ΓC(x) for the class C is a process
that produces objects from C according to this model.

→ 2 objects of the same size will be drawn with the same probability.
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Unlabelled unions, products, sequences

Suppose ΓA(x) and ΓB(x) are given:

Disjoint unions
Boltzmann sampler ΓC for C = A ∪ B:
With probability A(x)

C(x) do ΓA(x) else do ΓB(x) → Bernoulli.

Products
Boltzmann sampler ΓC for C = A× B:
Generate a pair 〈 ΓA(x) , ΓB(x) 〉 → independent calls.

Sequences

Boltzmann sampler ΓC for C = Seq(A):
Generate k according to a geometric law of parameter A(x)
Generate a k-tuple 〈 ΓA(x) , . . . , ΓA(x) 〉 → independent calls.

Remark: A(x), B(x) and C(x) are given by an oracle.
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Binary trees

B = Z + B × B

B(z) = z + B(z)2 =
1−
√

1− 4z

2

Algorithm: ΓB(x)

b← Bern(x/B(x));
if b = 1 then

Return �
else

Return 〈 ΓB(x) , ΓB(x) 〉 ;
end if
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Examples of specifications with {∪,×,Seq}
Regular specifications (non recursive).

integer compositions, permutations,...
polyominos that have rational g.f.: column-convex,

regular languages,

Context-free specifications.
any algebraic language,
tree-like structures

k-ary, 2–3–4 trees, ...,
triangulations,
noncrossing graphs,
general planar rooted trees,
...
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Labelled classes

Same algorithms, with exponential generating functions

construction sampler

C = ∅ or Z ΓC(x) := ε or atom

C = A+ B ΓC(x) := Bern Â(x)

Ĉ(x)
−→ ΓA(x) | ΓB(x)

C = A× B ΓC(x) := 〈 ΓA(x) ; ΓB(x) 〉

C = Seq(A) ΓC(x) := Geom Â(x) =⇒ ΓA(x)

Put the labels at the end !
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Size control – parameter tuning

Free samplers: produce objects with randomly varying sizes!
Approximate and exact size samplers: use rejection.
Tuned samplers: choose x so that expected size is n.

Ex(N) = x
C ′(x)
C(x)

or x
Ĉ ′(x)
Ĉ(x)

Size distribution determines the cost of rejection.
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