Map of Isomers

Different Classes of Stereoisomers

No stereo

Tetrahedral Stereoisomers

Double bond Stereoisomers

Both Tetrahedral and Double Bond stereoisomers

Molecules as Trees

Iterative Method

$$
\begin{aligned}
Y_{0}(z) & =0 \\
Y_{1}(z) & =z+z \cdot Y_{0}^{2}(z) \\
& =z+z \cdot 0 \\
& =z \\
Y_{2}(z) & =z+z \cdot Y_{1}^{2}(z) \\
& =z+z \cdot z^{2} \\
& =z+z^{3} \\
Y_{3}(z) & =z+Y_{3}^{2}(z) \\
& =z+z \cdot\left(z+z^{3}\right)^{2} \\
& =z+z \cdot\left(z^{2}+z^{6}+2 \cdot 2 z^{4}\right) \\
& =z+z^{3}+2 z^{5}+z^{7} \\
Y_{4}(z) & =z+z^{3}+2 z^{5}+5 z^{7}+6 z^{9}+6 z^{11}+4 z^{13}+z^{15} \\
Y_{5}(z) & =z+z^{3}+2 z^{5}+5 z^{7}+14 z^{9}+26 z^{11}+44 z^{13}+69 z^{15} \\
Y(z) & =z+z^{3}+2 z^{5}+5 z^{7}+14 z^{9}+42 z^{11}+132 z^{13}+429 z^{15}+. .
\end{aligned}
$$

Counting Asymmetric Centers (MSET2)

$$
T=Z+Z \times T+Z \times u \operatorname{MSET}_{2}(T)
$$

$$
z+z^{2}+(u+1) z^{3}+(2 u+1) z^{4}+\left(u^{2}+4 u+1\right) z^{5}
$$

Counting Asymmetric Centers (identical children)

$$
T(z)=z+z \cdot T(z)^{2}+z \cdot \frac{1}{2} T(z)^{2}+u \cdot z \cdot T\left(z^{2}\right)-z \cdot \frac{1}{2} T\left(z^{2}\right)
$$

$$
z+z^{2}+(u+1) z^{3}+(u+2) z^{4}+(3 u+3) z^{5}
$$

Asymmetric (all children different):
(all MSET2) - (all with identical children)

Counting Asymmetric Centers (MSET3)

$$
T(z)=z+z \cdot T(z)+z \cdot \operatorname{MSET}_{3}(T)
$$

$$
\begin{aligned}
& T(z)=z+z T(z)+u z \frac{1}{6} T(z)^{3}+u z \frac{1}{3} T\left(z^{3}\right)+u z T(z) T\left(z^{2}\right)-u z \frac{1}{2} T(z) T\left(z^{2}\right) \\
& T(z)=z+z T(z)+z \frac{1}{6} T(z)^{3}+z \frac{1}{3} T\left(z^{3}\right)+u z T(z) T\left(z^{2}\right)-z \frac{1}{2} T(z) T\left(z^{2}\right)
\end{aligned}
$$

$$
T(z)=z+z T(z)+u z \frac{1}{6} T(z)^{3}+u z \frac{1}{3} T\left(z^{3}\right)+z T(z) T\left(z^{2}\right)-u z \frac{1}{2} T(z) T\left(z^{2}\right)
$$

$G=z+Z \times G+M S E T_{2}(G)+M S E T_{3}(G)$

$z+z^{2}+2 z^{3}+(u+3) z^{4}+(3 u+5) z^{5}+\left(u^{2}+8 u+8\right) z^{6}+\left(5 u^{2}+20 u+14\right) z^{7}$

Asymmetric Centers marked with a star

A more complex example (cis/trans + tetrahedral)

both double bond and tetrahedral stereoisomers

