

17

Tracking Atoms Through Reactions

Marc Hellmuth, Daniel Merkle, and **Nikolai Nøjgaard**, *Atom tracking using cayley graphs*, 16th International Symposium on Bioinformatics Research and Applications (accepted) (2020)

 $s_1 = [3, 4, 3, 4, 5, 6, 7, 8]$

Marc Hellmuth, Daniel Merkle, and **Nikolai Nøjgaard**, *Atom tracking using cayley graphs*, 16th International Symposium on Bioinformatics Research and Applications (accepted) (2020)

$$s_1 = [3, 4, 3, 4, 5, 6, 7, 8]$$

$$\textit{s}_2 = [4, 3, 3, 4, 5, 6, 7, 8]$$

Marc Hellmuth, Daniel Merkle, and **Nikolai Nøjgaard**, *Atom tracking using cayley graphs*, 16th International Symposium on Bioinformatics Research and Applications (accepted) (2020)

$$s_1 = [3, 4, 3, 4, 5, 6, 7, 8]$$

$$s_2 = [4, 3, 3, 4, 5, 6, 7, 8]$$

$$s_3 = [5, 6, 7, 8, 5, 6, 7, 8]$$

Marc Hellmuth, Daniel Merkle, and **Nikolai Nøjgaard**, *Atom tracking using cayley graphs*, 16th International Symposium on Bioinformatics Research and Applications (accepted) (2020)

$$s_1 = [3, 4, 3, 4, 5, 6, 7, 8]$$

$$s_2 = [4, 3, 3, 4, 5, 6, 7, 8]$$

$$s_3 = [5, 6, 7, 8, 5, 6, 7, 8]$$

 $s_4 = [5, 6, 8, 7, 5, 6, 7, 8]$

Marc Hellmuth, Daniel Merkle, and **Nikolai Nøjgaard**, *Atom tracking using cayley graphs*, 16th International Symposium on Bioinformatics Research and Applications (accepted) (2020)

$$s_1 = [3, 4, 3, 4, 5, 6, 7, 8]$$

$$s_2 = [4, 3, 3, 4, 5, 6, 7, 8]$$

$$s_3 = [5, 6, 7, 8, 5, 6, 7, 8]$$

$$s_4 = [5, 6, 8, 7, 5, 6, 7, 8]$$

Marc Hellmuth, Daniel Merkle, and **Nikolai Nøjgaard**, *Atom tracking using cayley graphs*, 16th International Symposium on Bioinformatics Research and Applications (accepted) (2020)

The Projected Cayley Graph

Reversable Eventtraces

Natural Subsystems

The natural subsystems of a characteristic semigroup is the set of equivalence classes induced by the \mathcal{R} -relation.

The TCA Cycle

Stereochemistry in Citrate

Correct Mechanism

Wrong Mechanism

Summary

 Any reaction network constructed from a graph grammar has a characteristic semigroup.

Summary

- Any reaction network constructed from a graph grammar has a characteristic semigroup.
- Using it we can track the trajectories of select atoms in relation to each other.

Summary

- Any reaction network constructed from a graph grammar has a characteristic semigroup.
- Using it we can track the trajectories of select atoms in relation to each other.
- Allows for relatively easy modifications to account for e.g. stereochemistry.